20 research outputs found

    Interrelaciones entre la reconstrucción de la lógica y la noción pragmatista de verdad como "utilidad"

    Get PDF
    Teniendo como base una idea de experiencia más compleja, que encuentra antecedentes en los métodos de la ciencia moderna y en la biología darwiniana, Dewey señala la necesidad de actualizar y reconstruir la teoría lógica. Su nueva interpretación de las formas lógicas está íntimamente relacionada con la sustitución pragmatista de la noción de 'verdad' por la de 'utilidad'. Sin la noción de 'verdad por correspondencia' se convierte en un pseudo-problema la pregunta fundante de la epistemología y ya no hace falta dar una respuesta sobre la conexión entre las formas lógicas y el contenido. Para Dewey las formas lógicas tienen un tipo de contenido, hablan de las condiciones necesarias para que una investigación sea exitosa. En el presente trabajo nos ocuparemos de mostrar las argumentaciones de Dewey para sostener estas tesi

    Interrelaciones entre la reconstrucción de la lógica y la noción pragmatista de verdad como “utilidad” : Prescindibilidad de la noción correspondentista de verdad y de la epistemología en el tratamiento de la problemática del conocimiento

    Get PDF
    Teniendo como base una idea de experiencia más compleja, que encuentra antecedentes en los métodos de la ciencia moderna y en la biología darwiniana, Dewey señala la necesidad de actualizar y reconstruir la teoría lógica. Su nueva interpretación de las formas lógicas está íntimamente relacionada con la sustitución pragmatista de la noción de “verdad” por la de “utilidad”. Sin la noción de “verdad por correspondencia” se convierte en un pseudo-problema la pregunta fundante de la epistemología y ya no hace falta dar una respuesta sobre la conexión entre las formas lógicas y el contenido. Para Dewey las formas lógicas tienen un tipo de contenido, hablan de las condiciones necesarias para que una investigación sea exitosa. En el presente trabajo nos ocuparemos de mostrar las argumentaciones de Dewey para sostener estas tesis.Departamento de Filosofí

    Effect of Pristine Graphene on Methylammonium Lead Iodide Films and Implications on Solar Cell Performance

    Get PDF
    The relatively low stability of solar cells based on hybrid halide perovskites is the main issue to be solved for the implementation in real life of these extraordinary materials. Degradation is accelerated by temperature, moisture, oxygen, and light and mediated by halide easy hopping. The approach here is to incorporate pristine graphene, which is hydrophobic and impermeable to gases and likely limits ionic diffusion while maintaining adequate electronic conductivity. Low concentrations of few-layer graphene platelets (up to 24 × 10–3 wt %) were incorporated to MAPbI3 films for a detailed structural, optical, and transport study whose results are then used to fabricate solar cells with graphene-doped active layers. The lowest graphene content delays the degradation of films with time and light irradiation and leads to enhanced photovoltaic performance and stability of the solar cells, with relative improvement over devices without graphene of 15% in the power conversion efficiency, PCE. A higher graphene content further stabilizes the perovskite films but is detrimental for in-operation devices. A trade-off between the possible sealing effect of the perovskite grains by graphene, that limits ionic diffusion, and the reduction of the crystalline domain size that reduces electronic transport, and, especially, the detected increase of film porosity, that facilitates the access to atmospheric gases, is proposed to be at the origin of the observed trends. This work demonstrated how the synergy between these materials can help to develop cost-effective routes to overcome the stability barrier of metal halide perovskites, introducing active layer design strategies that allow commercialization to take off.We acknowledge financial support by the Spanish Ministry of Science and Innovation under Projects PID2020-115514RB-I00 (C.C.), MAT2015-65356-C3-2-R (A.A), and PID2019-107314RB-I00 (I.M-S). This work was partially supported by European Research Council (ERC) via Consolidator Grant (724424-No-LIMIT) (I.M-S), AYUDA PUENTE 2020 URJC (C.C.). Associated Lab LABCADIO belonging to Community of Madrid, CM, net laboratories ref 351 is also acknowledged (C.C.). T.S.R. acknowledges funding from CM and European Social Fund (ESF) under the Talento fellowship 2017-T2/IND-5586 and project F660 financed by CM and Rey Juan Carlos University under action 1, “Encouragement of Young Phd students investigation". C.R-O. acknowledges funding from the Spanish Ministry of Science and Innovation under a FPI predoctoral contract (PRE2019-088433)

    The aqueous Triton X-100 – dodecyltrimethylammonium bromidemicellar mixed system. Experimental results and thermodynamic analysis

    Get PDF
    The micellization process of the aqueous mixed system triton X-100 (TX100) – dodecyltrimethylammonium bromide (DTAB) has been studied with a battery of techniques: surface tension, static and dynamic light scattering and ion-selective electrodes. Results have been also analysed with two thermodynamic procedures: the Regular Solution Theory or Rubingh's model and the recently developed Equation Oriented Mixed Micellization Model (EOMMM). For α DTAB ≤ 0.40 (α DTAB : total molar fraction of the system without considering the water), the micelles are predominantly TX100 with scarce solubilized DTA + ions, with TX100 acting as a nearly ideal solvent. In the range 0.50 ≤ α DTAB ≤ 0.75, it seems that none of the components acts as a solvent. Above α DTAB ≈ 0.75 there are noticeable changes in the size and electrophoretic mobility of the micelles. These phenomena have been interpreted in the light of the thermodynamic results and literature on some TX100-ionic surfactant mixtures. The case under study is an almost ideal but very asymmetric mixed surfactants system, what is very interesting in view of the very different nature and structures of the components.Fil: Serafini, Patricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Fernández Leyes, Marcos Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Sánchez Morales, Jhon Freddy. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Pereyra, Romina Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Schulz, Erica Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Durand, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Schulz, Pablo Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Ritacco, Hernán Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentin

    Increasing the Performance and Stability of Red-Light-Emitting Diodes Using Guanidinium Mixed-Cation Perovskite Nanocrystals

    Get PDF
    Halide perovskite nanocrystals (PNCs) exhibit growing attention in optoelectronics due to their fascinating color purity and improved intrinsic properties. However, structural defects emerging in PNCs progressively hinder the radiative recombination and carrier transfer dynamics, limiting the performance of light-emitting devices. In this work, we explored the introduction of guanidinium (GA+) during the synthesis of high-quality Cs1–xGAxPbI3 PNCs as a promising approach for the fabrication of efficient bright-red light-emitting diodes (R-LEDs). The substitution of Cs by 10 mol % GA allows the preparation of mixed-cation PNCs with PLQY up to 100% and long-term stability for 180 days, stored under air atmosphere and refrigerated condition (4 °C). Here, GA+ cations fill/replace Cs+ positions into the PNCs, compensating intrinsic defect sites and suppressing the nonradiative recombination pathway. LEDs fabricated with this optimum material show an external quantum efficiency (EQE) near to 19%, at an operational voltage of 5 V (50–100 cd/m2) and an operational half-time (t50) increased 67% respect CsPbI3 R-LEDs. Our findings show the possibility to compensate the deficiency through A-site cation addition during the material synthesis, obtaining less defective PNCs for efficient and stable optoelectronic devices

    2D-Self-Assembled Organic Materials in Undoped Hole Transport Bilayers for Efficient Inverted Perovskite Solar Cells

    Get PDF
    Interfaces between photoactive perovskite layer and selective contacts play a key role in the performance of perovskite solar cells (PSCs). The properties of the interface can be modified by the introduction of molecular interlayers between the halide perovskite and the transporting layers. Herein, two novel structurally related molecules, 1,3,5-tris(α-carbolin-6-yl)benzene (TACB) and the hexamethylated derivative of truxenotris(7-azaindole) (TTAI), are reported. Both molecules have the ability to self-assemble through reciprocal hydrogen bond interactions, but they have different degrees of conformational freedom. The benefits of combining these tripodal 2D-self-assembled small molecular materials with well-known hole transporting layers (HTLs), such as PEDOT:PSS and PTAA, in PSCs with inverted configuration are described. The use of these molecules, particularly the more rigid TTAI, enhanced the charge extraction efficiency and reduced the charge recombination. Consequently, an improved photovoltaic performance was achieved in comparison to the devices fabricated with the standard HTLs.The authors are grateful for the financial support from the Ministry of Science, Innovation and Universities (Projects RTI2018-101092–B-I00, PID2021-122734OB-I00), Fundación Séneca–Agencia de Ciencia y Tecnología de la Región de Murcia (Projects 20959/PI/18, 22058/PI/22), Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia (RED2018-102815-T), and University Jaume I (Project EPCESBI UJI-B2022-08)

    Photonic Processing of MAPbI3 Films by Flash Annealing and Rapid Growth for High-Performance Perovskite Solar Cells

    No full text
    Defects in polycrystalline halide perovskite films can cause a decrease of the solar cell photoconversion efficiency and stability. The perovskite film enhanced during crystal growth by controlling the processing method can alleviate defects and the related recombination sites that affect the performance of cells. Herein, flash infrared annealing is employed to crystallize methylammonium lead iodide perovskite with a single heating pulse, where uniform grain domains are optically observed and mapped. Films are annealed with different temperature ramps up to 48 °C s−1 heating rate. Annealing with higher heating rates presents lower defect densities, decreases the Urbach energy tail, and improves the optoelectrical performance of the films. These improvements are rationalized by Raman spectroscopy of nucleation points and grain surface differences among the process variations. The role of crystal growth and subsequent film quality allows to achieve a champion photovoltaic device growth at 48 °C s−1 with stability around 250 h under 1 sun illumination and 60% relative humidity for 100 h under 3 sun (AM1.5G) illumination. In situ optical imaging is recorded during the process, confirming that rapid annealing, i.e., higher heating rates, contributes to obtain more stable devices with the added advantage of shorter processing time.Funding for open access charge: CRUE-Universitat Jaume

    Balanced change in crystal unit cell volume and strain leads to stable halide perovskite with high guanidinium content

    No full text
    Up-to-date studies propose that strain in halide perovskites is one of the key factors that determine a device's efficiency and stability. Here, we show a systematic approach to characterize the phenomenon in the standard methylammonium lead iodine (MAPbI3) perovskite system by: (i) the substitution of some MA by guanidinium (Gu); (ii) the incorporation of PbS quantum dot (QD) additives and (iii) addition of both Gu and PbS at the same time. We studied the effect of these incorporations on the film strain and crystal cell unit volume, and on the solar cell device efficiency and stability. Gu cations and PbS QDs affect the strain, the former due to the relatively large dimensions of Gu, and the latter due to the lattice matching parameters. With the control of Gu and PbS QD content, higher performance and longer solar cell stability are obtained. We demonstrated that the presence of Gu and PbS QDs alters the structure of perovskite, in terms of modification of the unit cell volume and strain. The greater size of Gu cations produces a MAPbI3 unit cell volume expansion as Gu is incorporated, modifying the strain from compressive to tensile. PbS QDs aid Gu incorporation, producing a unit cell volume expansion. In the case of 15% mol Gu incorporation, the addition of PbS QDs modifies strain from compressive to tensile, limiting the deleterious effect. At the same time the unit cell volume is less affected, increasing the solar cell stability. Our work shows that the control of compressive strain and the unit cell volume expansion lead to a 50% increase in T80, the time in which the PCE decreases to 80% of its original value, increasing the T80 value from 120 to 187 days under air conditions. Moreover it highlights the importance of exploiting not only the control of the strain induced by internal component, the cation, but also the strain induced by the external component, the QD, associated instead with critical volume variation of metastable perovskite unit cell volume

    Interface Engineering in Perovskite Solar Cells by Low Concentration of Phenylethyl Ammonium Iodide Solution in the Antisolvent Step

    No full text
    [EN] In spite of the outstanding properties of metal halide perovskites, its polycrystalline nature induces a wide range of structural defects that results in charge losses that affect the final device performance and stability. Herein, a surface treatment is used to passivate interfacial vacancies and improve moisture tolerance. A functional organic molecule, phenylethyl ammonium iodide (PEAI) salt, is dissolved with the antisolvent step. The additive used at low concentration does not induce formation of low-dimensional perovskites species. Instead, the organic halide species passivate the surface of the perovskite and grain boundaries, which results in an effective passivation. For sake of generality, this facile solution-processed synthesis was studied for halide perovskite with different compositions, the standard perovskite MAPbI, and double cation perovskites, MACsPbI and MAFAPbI, increasing the average photoconversion efficiency compared to the reference cell by 18%, 32%, and 4% respectively, observed for regular, n-i-p, and inverted, p-i-n, solar cell configurations. This analysis highlights the generality of this approach for halide perovskite materials in order to reduce nonradiative recombination as observed by impedance spectroscopy.T.S.R. acknowledges funding from Community of Madrid under the Talentfellowship 2017-T2/IND-5586 and project F660 financed by Community of Madrid and Rey Juan Carlos University. The authors acknowledgefinancialsupport by the Spanish Ministry of Science and Innovation under Projects PID2020-115514RB-I00, MAT2015-65356-C3-2-R, and PID2019-107314RB-I00. This work was partially supported by AYUDA PUENTE 2020 URJC.Associated Lab LABCADIO belonging to CM net laboratories ref 351are also acknowledge. C.R.O. acknowledges funding from the Spanish Ministry of Science and Innovation under a FPI pre-doctoral contract(PRE2019-088433
    corecore