142 research outputs found
Meta-model Pruning
Large and complex meta-models such as those of Uml and its profiles are growing due to modelling and inter-operability needs of numerous\ud
stakeholders. The complexity of such meta-models has led to coining\ud
of the term meta-muddle. Individual users often exercise only a small\ud
view of a meta-muddle for tasks ranging from model creation to construction\ud
of model transformations. What is the effective meta-model that represents\ud
this view? We present a flexible meta-model pruning algorithm and\ud
tool to extract effective meta-models from a meta-muddle. We use\ud
the notion of model typing for meta-models to verify that the algorithm\ud
generates a super-type of the large meta-model representing the meta-muddle.\ud
This implies that all programs written using the effective meta-model\ud
will work for the meta-muddle hence preserving backward compatibility.\ud
All instances of the effective meta-model are also instances of the\ud
meta-muddle. We illustrate how pruning the original Uml metamodel\ud
produces different effective meta-models
Integration of DFDs into a UML - based model-driven engineering approach
The main aim of this article is to discuss how the functional and the object-oriented views can be inter-played to represent the various modeling perspectives of embedded systems.We discuss whether the object-oriented modeling paradigm, the predominant one to develop software at the present time, is also adequate for modeling embedded software and how it can be used with the functional paradigm.More specifically, we present how the main modeling tool of the traditional structured methods, data flow diagrams, can be integrated in an object-oriented development strategy based on the unified modeling language. The rationale behind the approach is that both views are important for modeling purposes in embedded systems environments, and thus a combined and integrated model is not only useful, but also fundamental for developing complex systems. The approach was integrated in amodel-driven engineering process, where tool support for the models used was provided. In addition, model transformations have been specified and implemented to automate the process.We exemplify the approach with an IPv6 router case study.FEDER -Fundação para a CiĂȘncia e a Tecnologia(HH-02-383
AusTraits, a curated plant trait database for the Australian flora
We introduce the AusTraits database - a compilation of values of plant traits for taxa in the Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 taxa from field campaigns, published literature, taxonomic monographs, and individual taxon descriptions. Traits vary in scope from physiological measures of performance (e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes (e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits contains curated and harmonised individual- and species-level measurements coupled to, where available, contextual information on site properties and experimental conditions. This article provides information on version 3.0.2 of AusTraits which contains data for 997,808 trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for easily archiving and sharing trait data, which also provides a template for other national or regional initiatives globally to fill persistent gaps in trait knowledge
Global variability in leaf respiration in relation to climate, plant functional types and leaf traits
âą Leaf dark respiration (Rdark) is an important yet poorly quantified component of the global carbon cycle. Given this, we analyzed a new global database of Rdark and associated leaf traits.
âą Data for 899 species were compiled from 100 sites (from the Arctic to the tropics). Several woody and nonwoody plant functional types (PFTs) were represented. Mixed-effects models were used to disentangle sources of variation in Rdark.
âą Area-based Rdark at the prevailing average daily growth temperature (T) of each site increased only twofold from the Arctic to the tropics, despite a 20°C increase in growing T (8â28°C). By contrast, Rdark at a standard T (25°C, Rdark25) was threefold higher in the Arctic than in the tropics, and twofold higher at arid than at mesic sites. Species and PFTs at cold sites exhibited higher Rdark25 at a given photosynthetic capacity (Vcmax25) or leaf nitrogen concentration ([N]) than species at warmer sites. Rdark25 values at any given Vcmax25 or [N] were higher in herbs than in woody plants.
âą The results highlight variation in Rdark among species and across global gradients in T and aridity. In addition to their ecological significance, the results provide a framework for improving representation of Rdark in terrestrial biosphere models (TBMs) and associated land-surface components of Earth system models (ESMs)
- âŠ