66 research outputs found

    Synthesis and Applications of Synthetic Peptides

    Get PDF
    The synthesis and applications of the peptides are gaining increasing popularity as a result of the developments in biotechnology and bioengineering areas and for a number of research purposes including cancer diagnosis and treatment, antibiotic drug development, epitope mapping, production of antibodies, and vaccine design. The use of synthetic peptides approved by the health authorities for vaccine, for cancer, and in drug delivery systems is increasing with these developments. The aim of this book chapter is to review the recent developments in the use of peptides in the diagnosis of drug and vaccine systems and to present them to the reader with commercially available illustrations

    An Upper Bound to the Space Density of Interstellar Comets

    Full text link
    Two well-studied white dwarfs with helium-dominated atmospheres (DBs) each possess less hydrogen than carried by a single average-mass comet. Plausibly, the wind rates from these stars are low enough that most accreted hydrogen remains with the star. If so, and presuming their nominal effective temperatures, then these DBs have been minimally impacted by interstellar comets during their 50 Myr cooling age; interstellar iceballs with radii between 10 m and 2 km contain less than 1% of all interstellar oxygen. This analysis suggests that most stars do not produce comets at the rate predicted by "optimistic" scenarios for the formation of the Oort cloud.Comment: Astronomical Journal, accepte

    3D printing of silver-doped polycaprolactone-poly(propylene succinate) composite scaffolds for skin tissue engineering

    Get PDF
    Scaffold-based tissue engineering approaches have been commonly used for skin regeneration or wound healings caused by diseases or trauma. For an ideal complete healing process, scaffold structures need to meet the criteria of biocompatibility, biodegradability, and antimicrobial properties, as well as to provide geometrical necessities for the regeneration of damaged tissue. In this study, design, synthesis and characterization of a three dimensional (3D) printable copolymer based on polycaprolactone-block-poly(1,3-propylene succinate) (PCL-PPSu) including anti-microbial silver particles is presented. 3D printing of PCL-PPSu copolymers provided a lower processing temperature compared to neat PCL, hence, inclusion of temperature-sensitive bioactive reagents into the developed copolymer could be realized. In addition, 3D printed block copolymer showed an enhanced hydrolytic and enzymatic degradation behavior. Cell viability and cytotoxicity of the developed copolymer were evaluated by using human dermal fibroblast (HDF) cells. The addition of silver nitrate within the polymer matrix resulted in a significant decrease in the adhesion of different types of microorganisms on the scaffold without inducing any cytotoxicity on HDF cells in vitro. The results suggested that 3D printed PCL-PPSu scaffolds containing anti-microbial silver particles could be considered as a promising biomaterial for emerging skin regenerative therapies, in the light of its adaptability to 3D printing technology, low-processing temperature, enhanced degradation behavior and antimicrobial properties.</p

    Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes

    Get PDF
    Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn), maximal photochemical efficiency (Fv/Fm), electron transport for carbon fixation (JPSII) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL

    Stellar Astrophysics and Exoplanet Science with the Maunakea Spectroscopic Explorer (MSE)

    Full text link
    The Maunakea Spectroscopic Explorer (MSE) is a planned 11.25-m aperture facility with a 1.5 square degree field of view that will be fully dedicated to multi-object spectroscopy. A rebirth of the 3.6m Canada-France-Hawaii Telescope on Maunakea, MSE will use 4332 fibers operating at three different resolving powers (R ~ 2500, 6000, 40000) across a wavelength range of 0.36-1.8mum, with dynamical fiber positioning that allows fibers to match the exposure times of individual objects. MSE will enable spectroscopic surveys with unprecedented scale and sensitivity by collecting millions of spectra per year down to limiting magnitudes of g ~ 20-24 mag, with a nominal velocity precision of ~100 m/s in high-resolution mode. This white paper describes science cases for stellar astrophysics and exoplanet science using MSE, including the discovery and atmospheric characterization of exoplanets and substellar objects, stellar physics with star clusters, asteroseismology of solar-like oscillators and opacity-driven pulsators, studies of stellar rotation, activity, and multiplicity, as well as the chemical characterization of AGB and extremely metal-poor stars.Comment: 31 pages, 11 figures; To appear as a chapter for the Detailed Science Case of the Maunakea Spectroscopic Explore

    The TopClosure® 3S System, for skin stretching and a secure wound closure

    Get PDF
    The principle of stretching wound margins for primary wound closure is commonly practiced and used for various skin defects, leading at times to excessive tension and complications during wound closure. Different surgical techniques, skin stretching devices and tissue expanders have been utilized to address this issue. Previously designed skin stretching devices resulted in considerable morbidity. They were invasive by nature and associated with relatively high localized tissue pressure, frequently leading to necrosis, damage and tearing of skin at the wound margins. To assess the clinical effectiveness and performance and, to determine the safety of TopClosure® for gradual, controlled, temporary, noninvasive and invasive applications for skin stretching and secure wound closing, the TopClosure® device was applied to 20 patients for preoperative skin lesion removal and to secure closure of a variety of wound sizes. TopClosure® was reinforced with adhesives, staples and/or surgical sutures, depending on the circumstances of the wound and the surgeon’s judgment. TopClosure® was used prior to, during and/or after surgery to reduce tension across wound edges. No significant complications or adverse events were associated with its use. TopClosure® was effectively used for preoperative skin expansion in preparation for dermal resection (e.g., congenital nevi). It aided closure of large wounds involving significant loss of skin and soft tissue by mobilizing skin and subcutaneous tissue, thus avoiding the need for skin grafts or flaps. Following surgery, it was used to secure closure of wounds under tension, thus improving wound aesthetics. A sample case study will be presented. We designed TopClosure®, an innovative device, to modify the currently practiced concept of wound closure by applying minimal stress to the skin, away from damaged wound edges, with flexible force vectors and versatile methods of attachment to the skin, in a noninvasive or invasive manner

    Precessing jet nozzle connecting to a spinning black hole in M87

    Full text link
    The nearby radio galaxy M87 offers a unique opportunity to explore the connections between the central supermassive black hole and relativistic jets. Previous studies of the inner region of M87 revealed a wide opening angle for the jet originating near the black hole. The Event Horizon Telescope resolved the central radio source and found an asymmetric ring structure consistent with expectations from General Relativity. With a baseline of 17 years of observations, there was a shift in the jet's transverse position, possibly arising from an eight to ten-year quasi-periodicity. However, the origin of this sideways shift remains unclear. Here we report an analysis of radio observations over 22 years that suggests a period of about 11 years in the position angle variation of the jet. We infer that we are seeing a spinning black hole that induces the Lense-Thirring precession of a misaligned accretion disk. Similar jet precession may commonly occur in other active galactic nuclei but has been challenging to detect owing to the small magnitude and long period of the variation.Comment: 41 pages, 7 figures, 7 table

    Determination of thyroglobulin levels by radioimmunoassay method in anti thyroglobulin positive differentiated thyroid patients: One center clinical experience

    No full text
    It is very crucial to determine Tg accurately and precisely in thyroid cancer cases. Although there are many studies on the detection of Tg in thyroid cases in the literature, there are no sufficient clinical studies examining many cases with different features by using RIA methodology. Here, a radiometric and chromatographic method has been studied for the first time to eliminate the interference from anti-Tg positive patients. In this paper, radioimmunoassay (RIA) and immunoradiometric (IRMA) techniques were used for the analysis of 302 sera collected from patients for Tg and TgAb quantification. By the RIA technique, a reliable result was obtained by calculating the real Tg value quantitatively in 41 patients showing TgAb positivity out of 208 patients. Our findings show that the RIA assay is the most suitable approach for detection of changeable (low or undetectable) Tg value and metastases detected by post-therapeutic imaging in early-stage DTC cases showing preoperative and postoperative TgAb positivity. The new immunoradiometric method allows the real (%) Tg value to be reached in a part of TgAb-positive DTC. Even if TgAb positive in the metastatic and nonmetastatic DTC patient group. This allows the accurate clinical follow-up of patients

    Hexagonal boron nitrides reduce the oxidative stress on cells

    No full text
    The molecular stress caused by a drug administered to treat a disorder on healthy cells appears as a side effect. In this study, we aim to understand the potential of hexagonal boron nitrides (hBNs) as a therapeutic agent to relieve the cellular stress exerted by drugs. First, the cytotoxicity of hBNs and their possible degradation product, boric acid (BA), on the embryonic mouse hippocampal cell line mHippo E-14 was assessed in a wide concentration range (4.4-440 ÎĽg ml-1) of boron including hBNs and BA for 24 and 72 h exposure. Then, cell cycle, reactive oxygen species generation, cell death mechanism and apoptotic body formation in nuclei with hBN and BA exposure were evaluated at increased concentrations and incubation times. Finally, the cells, exposed to doxorubicin (DOX), an anti-cancer chemotherapy drug, to exert oxidative stress, were treated with hBNs and BA. The results indicate that hBNs decrease the oxidative stress at the concentrations that are nontoxic to cells. The study suggests that hBNs can open new venues for their investigation to reduce or eliminate the adverse effects of toxic drugs used in the treatment of several fatal diseases including neurological disorders and cancer with their slow degradation feature
    • …
    corecore