20 research outputs found

    Comparison of anadromous and landlocked Atlantic salmon genomes reveals signatures of parallel and relaxed selection across the Northern Hemisphere

    Get PDF
    Most Atlantic salmon (Salmo salarL.) populations follow an anadromous life cycle, spending early life in freshwater, migrating to the sea for feeding, and returning to rivers to spawn. At the end of the last ice age similar to 10,000 years ago, several populations of Atlantic salmon became landlocked. Comparing their genomes to their anadromous counterparts can help identify genetic variation related to either freshwater residency or anadromy. The objective of this study was to identify consistently divergent loci between anadromous and landlocked Atlantic salmon strains throughout their geographical distribution, with the long-term aim of identifying traits relevant for salmon aquaculture, including fresh and seawater growth, omega-3 metabolism, smoltification, and disease resistance. We used a Pool-seq approach (n = 10-40 individuals per population) to sequence the genomes of twelve anadromous and six landlocked Atlantic salmon populations covering a large part of the Northern Hemisphere and conducted a genomewide association study to identify genomic regions having been under different selection pressure in landlocked and anadromous strains. A total of 28 genomic regions were identified and includedcadm1on Chr 13 andppargc1aon Chr 18. Seven of the regions additionally displayed consistently reduced heterozygosity in fish obtained from landlocked populations, including the genes gpr132, cdca4, and sertad2 on Chr 15. We also found 16 regions, includingigf1on Chr 17, which consistently display reduced heterozygosity in the anadromous populations compared to the freshwater populations, indicating relaxed selection on traits associated with anadromy in landlocked salmon. In conclusion, we have identified 37 regions which may harbor genetic variation relevant for improving fish welfare and quality in the salmon farming industry and for understanding life-history traits in fish.Peer reviewe

    Skape ekstreme læreworkshops for det industrielle internett

    No full text
    Industrien i Møre og Romsdal er kjent for raskt å svare på nye markedsmuligheter i en stadig mer globalisert økonomi. IKuben er en næringsklynge med 35 av disse selskapene som medlemmer. De har et felles ønske om å lære mer om utfordringene og mulighetene i det industrielle internett. Undersøkelsene startet ved å forstå de ulike interessentene for en slik workshop gjennom intervjuer, eksperter, medfasilitering av workshops og testing av prototype verktøy. Funnene ble analysert og dannet rammene for den industrielle Internet Workshop (IIW) 1.0. Det å bruke workshops i undervisningssammenheng viste seg å fungerer bra: Både i forhold til undervisning om det industrielle internett, men også bruk av metodikken som utgjør rammene for workshoppen, Design Thinking. Innenfor disse rammene kan man samkjøre den strategisk tenkningen til konsernsjefen med den tekniske kunnskapen til teknikeren. Dette kan tilføre stor verdi til selskapet gjennom bedre bruk av data. For å lære av hver workshop må det være en plan for hvordan en samler data. Det samme gjelder for bedrifter. I tillegg til å lære hva de skal bruke eksisterende data til, må de lære seg hvordan man måler den riktige dataen

    Recent advances in the surgical treatment of pulmonary tuberculosis

    No full text

    The vgll3 Locus Controls Age at Maturity in Wild and Domesticated Atlantic Salmon(Salmo salar L.) Males

    Get PDF
    Wild and domesticated Atlantic salmon males display large variation for sea age at sexual maturation, which varies between 1–5 years. Previous studies have uncovered a genetic predisposition for variation of age at maturity with moderate heritability, thus suggesting a polygenic or complex nature of this trait. The aim of this study was to identify associated genetic loci, genes and ultimately specific sequence variants conferring sea age at maturity in salmon. We performed a genome wide association study (GWAS) using a pool sequencing approach (20 individuals per river and phenotype) of male salmon returning to rivers as sexually mature either after one sea winter (2009) or three sea winters (2011) in six rivers in Norway. The study revealed one major selective sweep, which covered 76 significant SNPs in which 74 were found in a 370 kb region of chromosome 25. Genotyping other smolt year classes of wild and domesticated salmon confirmed this finding. Genotyping domesticated fish narrowed the haplotype region to four SNPs covering 2386 bp, containing the vgll3 gene, including two missense mutations explaining 33–36% phenotypic variation. A single locus was found to have a highly significant role in governing sea age at maturation in this species. The SNPs identified may be both used as markers to guide breeding for late maturity in salmon aquaculture and in monitoring programs of wild salmon. Interestingly, a SNP in proximity of the VGLL3 gene in humans (Homo sapiens), has previously been linked to age at puberty suggesting a conserved mechanism for timing of puberty in vertebrates. Author Summary. For most species the factors that contribute to the genetic predisposition for age at maturity are currently unknown. In salmon aquaculture early maturation is negative for the growth, disease resistance and flesh quality. In addition, using populations of salmon selected to mature late may limit the genetic impact of aquaculture escapees, as these late maturing fish are more likely to die before they reach maturity. The aim of this study was to elucidate the genetic predisposition for salmon maturation. We determined the sequences of genomes from Atlantic salmon maturing early and late in six Norwegian rivers. This methodology enabled us to identify a short genomic region involved in determining the age at maturity in male Atlantic salmon. This region has also previously been linked to time of puberty in humans–supporting a general mechanism behind age at maturity in vertebrates. The results of this study may be used to breed salmon that are genetically predisposed to mature late which will improve welfare and production in aquaculture industry and aid in the management of escaped farmed salmon

    Comparison of anadromous and landlocked Atlantic salmon genomes reveals signatures of parallel and relaxed selection across the Northern Hemisphere

    No full text
    Most Atlantic salmon (Salmo salar L.) populations follow an anadromous life cycle, spending early life in freshwater, migrating to the sea for feeding, and returning to rivers to spawn. At the end of the last ice age ~10,000 years ago, several populations of Atlantic salmon became landlocked. Comparing their genomes to their anadromous counterparts can help identify genetic variation related to either freshwater residency or anadromy. The objective of this study was to identify consistently divergent loci between anadromous and landlocked Atlantic salmon strains throughout their geographical distribution, with the long‐term aim of identifying traits relevant for salmon aquaculture, including fresh and seawater growth, omega‐3 metabolism, smoltification, and disease resistance. We used a Pool‐seq approach (n = 10–40 individuals per population) to sequence the genomes of twelve anadromous and six landlocked Atlantic salmon populations covering a large part of the Northern Hemisphere and conducted a genomewide association study to identify genomic regions having been under different selection pressure in landlocked and anadromous strains. A total of 28 genomic regions were identified and included cadm1 on Chr 13 and ppargc1a on Chr 18. Seven of the regions additionally displayed consistently reduced heterozygosity in fish obtained from landlocked populations, including the genes gpr132, cdca4, and sertad2 on Chr 15. We also found 16 regions, including igf1 on Chr 17, which consistently display reduced heterozygosity in the anadromous populations compared to the freshwater populations, indicating relaxed selection on traits associated with anadromy in landlocked salmon. In conclusion, we have identified 37 regions which may harbor genetic variation relevant for improving fish welfare and quality in the salmon farming industry and for understanding life‐history traits in fish

    Heterochiasmy and the establishment of gsdf as a novel sex determining gene in Atlantic halibut

    Get PDF
    Atlantic Halibut (Hippoglossus hippoglossus) has a X/Y genetic sex determination system, but the sex determining factor is not known. We produced a high-quality genome assembly from a male and identified parts of chromosome 13 as the Y chromosome due to sequence divergence between sexes and segregation of sex genotypes in pedigrees. Linkage analysis revealed that all chromosomes exhibit heterochiasmy, i.e. male-only and female-only meiotic recombination regions (MRR/FRR). We show that FRR/MRR intervals differ in nucleotide diversity and repeat class content and that this is true also for other Pleuronectidae species. We further show that remnants of a Gypsy-like transposable element insertion on chr13 promotes early male specific expression of gonadal somatic cell derived factor (gsdf). Less than 4.5 MYA, this male-determining element evolved on an autosomal FRR segment featuring pre-existing male meiotic recombination barriers, thereby creating a Y chromosome. Our findings indicate that heterochiasmy may facilitate the evolution of genetic sex determination systems relying on linkage of sexually antagonistic loci to a sex-determining factor. Author summaryEven closely related fish species can have different sex chromosomes, but this turn-over of sex determination systems is poorly understood. Here, we used large-scale genome sequencing to determine the DNA sequence of the Atlantic halibut chromosomes and compared sequencing data from males and females to identify the sex chromosomes. We show that males have much higher gene activity of the gene gonadal somatic cell derived factor (gsdf), which is located on the sex chromosomes and has a role in testicular development. The genome contains many mobile DNA sequences, transposable elements (TEs), one placed in front of gsdf, enhancing its activity. This made gsdf the sex determining factor, thereby creating a new Y-chromosome. We further describe how all Atlantic halibut chromosomes behave similar to sex chromosomes in that most regions only recombine in one sex. This phenomenon may contribute to the rapid turn-over of genetic sex determination systems in fish. Our results highlight the molecular events creating a new Y-chromosome and show that the new Atlantic halibut Y was formed less than 4.5 million years ago. Future studies in Atlantic halibut and closely related species can shed light on mechanisms contributing to sex chromosome evolution in fish
    corecore