9 research outputs found

    Fatty Acids and Their Analogues as Anticancer Agents

    Get PDF
    Recent research supports the beneficial effects of dietary polyunsaturated fatty acids (PUFAs) on inhibiting tumour development. Long‐chain fatty acids modulate the tumour cell response to chemotherapeutic drugs. Investigators recently claimed high dietary intake of omega‐6 polyunsaturated fatty acids such as linoleic acid especially in association with a low intake of omega‐3 polyunsaturated fatty acids such as docosahexaenoic acid to increase risks for cancers of the breast, colon and possibly prostate. In addition to these facts, a number of investigations have demonstrated that a modified fatty acid analogues are promising molecules in cancer prevention and have potential in the treatment of cancer. Although billions of dollars have been spent on research and development on anticancer drugs, the disease remains uncontrolled. It is expected that anticancer agents preferentially kill tumour cells without causing adverse effects on normal cells. But this is rarely achieved with the existing cancer therapy. Hence, polyunsaturated fatty acids have come under the category of nutraceuticals/functional foods; their exploration in the treatment of cancer may be considered as safe. This chapter describes the effects of long‐chain fatty acids and their analogues in cancer chemotherapy

    Synthesis and Neuropharmacological Evaluation of Some Novel Quinoxaline 2, 3-Dione Derivatives

    Get PDF
    Quinoxaline-2, 3-dione obtained from cyclocondensation reaction of o-phenylene diamine with oxalic acid was reacted with three different ketones and formaldehyde to give the corresponding Mannich bases in satisfactory yield. Their structures were confirmed by using 1H NMR, IR, and mass analysis. In pharmacological evaluation, the synthesized compounds showed its curative effect against ethidium-bromide-induced demyelination in rats. For the purpose, different screening methods such as open field exploratory behavior test, rota rod test, grip strength test, beam walk test, and photo actometer test were performed. Ethidium bromide induction showed muscle weakness; muscle discoordination; loss of locomotor activity, and so forth, the synthesized drugs reversed all the above-mentioned neuromuscular disorders caused by ethidium bromide administration

    A brief review of scaffold/ drug repurposing for breast cancer therapy

    No full text

    FORMULATION AND OPTIMIZATION OF HYDROXYUREA LOADED NANOSTRUCTURED LIPID CARRIERS USING DESIGN OF EXPERIMENT FOR THE EFFECTIVE TREATMENT OF OVARIAN CANCER

    No full text
    Objective: Ovarian cancer is the most deadly cancer in women, ranking fourth among all fatal diseases in women. Conventional chemotherapy has its own plethora of challenges, such as side effects and disease relapse. Hydroxyurea is a type of anticancer drug that is commonly used to treat malignancies. This study aims to develop and optimize hydroxyurea nanostructured lipid carriers (NLCs) to improve the therapeutic index and reduce its side effects in the effective treatment of OC. Methods: NLCs were prepared by microemulsion technique. They were prepared and optimized using the design of experiment for particle size and drug entrapment efficiency. Particle size, polydispersity index, zeta potential, morphology, in vitro release, and stability were all examined in the optimized formulation. Results: The results showed that the particle size of the NLCs was in the range of 224 nm to 634 nm. The drug entrapment efficiency of the NLCs was in the range of 46.33 % to 70.43 %. The optimized NLCs had a particle size of 237 nm, a polydispersity index of 26.9%, and zeta potential of -29.7 mV. These NLCs were spherical, showed in vitro drug release of 92.21% up to 48 h, and were found to be stable from the stability studies. Conclusion: This approach could be used as a better drug delivery platform to improve the drug's therapeutic index, reduce its side effects, and be feasible in the effective management of ovarian cancer
    corecore