191 research outputs found

    A mathematical description of nerve fiber bundle trajectories and their variability in the human retina

    Get PDF
    AbstractWe developed a mathematical model wherein retinal nerve fiber trajectories can be described and the corresponding inter-subject variability analyzed. The model was based on traced nerve fiber bundle trajectories extracted from 55 fundus photographs of 55 human subjects. The model resembled the typical retinal nerve fiber layer course within 20° eccentricity. Depending on the location of the visual field test point, the standard deviation of the calculated corresponding angular location at the optic nerve head circumference ranged from less than 1° to 18°, with an average of 8.8°

    Observation of ultrafast interfacial Meitner-Auger energy transfer in a van der Waals heterostructure

    Get PDF
    Atomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe2/graphene heterostructure. Depending on the nature of the optically prepared state, we find the different dominating transfer mechanisms: while electron injection from graphene to WSe2 is observed after photoexcitation of quasi-free hot carriers in the graphene layer, we establish an interfacial Meitner-Auger energy transfer process following the excitation of excitons in WSe2. By analysing the time-energy-momentum distributions of excited-state carriers with a rate-equation model, we distinguish these two types of interfacial dynamics and identify the ultrafast conversion of excitons in WSe2 to valence band transitions in graphene. Microscopic calculations find interfacial dipole-monopole coupling underlying the Meitner-Auger energy transfer to dominate over conventional Förster- and Dexter-type interactions, in agreement with the experimental observations. The energy transfer mechanism revealed here might enable new hot-carrier-based device concepts with van der Waals heterostructures

    Specification of progression in glaucomatous visual field loss, applying locally condensed stimulus arrangements

    Get PDF
    The goal of this work was to (i) determine patterns of progression in glaucomatous visual field loss, (ii) compare the detection rate of progression between locally condensed stimulus arrangements and conventional 6° × 6° grid, and (iii) assess the individual frequency distribution of test locations exhibiting a local event (i.e., an abrupt local deterioration of differential luminance sensitivity (DLS) by more than -10dB between any two examinations). The visual function of 41 glaucomatous eyes of 41 patients (16 females, 25 males, 37 to 75 years old) was examined with automated static perimetry (Tuebingen Computer Campimeter or Octopus 101-Perimeter). Stimuli were added to locally enhance the spatial resolution in suspicious regions of the visual field. The minimum follow-up was four subsequent sessions with a minimum of 2-month (median 6-month) intervals between each session. Progression was identified using a modified pointwise linear regression (PLR) method and a modified Katz criterion. The presence of events was assessed in all progressive visual fields. Eleven eyes (27%) showed progression over the study period (median 2.5 years, range 1.3–8.6 years). Six (55%) of these had combined progression in depth and size and five eyes (45%) progressed in depth only. Progression in size conformed always to the nerve fiber course. Seven out of 11 (64%) of the progressive scotomata detected by spatially condensed grids would have been missed by the conventional 6° × 6° grid. At least one event occurred in 64% of all progressive eyes. Five of 11 (46%) progressive eyes showed a cluster of events. The most common pattern of progression in glaucomatous visual fields is combined progression in depth and size of an existing scotoma. Applying individually condensed test grids remarkably enhances the detection rate of glaucomatous visual field deterioration (at the expense of an increased examination time) compared to conventional stimulus arrangements

    A molecular phylogeny of Hypnales (Bryophyta) inferred from ITS2 sequence-structure data

    Get PDF
    Background: Hypnales comprise over 50% of all pleurocarpous mosses. They provide a young radiation complicating phylogenetic analyses. To resolve the hypnalean phylogeny, it is necessary to use a phylogenetic marker providing highly variable features to resolve species on the one hand and conserved features enabling a backbone analysis on the other. Therefore we used highly variable internal transcribed spacer 2 (ITS2) sequences and conserved secondary structures, as deposited with the ITS2 Database, simultaneously. Findings: We built an accurate and in parts robustly resolved large scale phylogeny for 1,634 currently available hypnalean ITS2 sequence-structure pairs. Conclusions: Profile Neighbor-Joining revealed a possible hypnalean backbone, indicating that most of the hypnalean taxa classified as different moss families are polyphyletic assemblages awaiting taxonomic changes

    Downregulation of Cinnamyl-Alcohol Dehydrogenase in Switchgrass by RNA Silencing Results in Enhanced Glucose Release after Cellulase Treatment

    Get PDF
    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in monolignol biosynthesis and genetic evidence indicates CAD deficiency in grasses both decreases overall lignin, alters lignin structure and increases enzymatic recovery of sugars. To ascertain the effect of CAD downregulation in switchgrass, RNA mediated silencing of CAD was induced through Agrobacterium mediated transformation of cv. “Alamo” with an inverted repeat construct containing a fragment derived from the coding sequence of PviCAD2. The resulting primary transformants accumulated less CAD RNA transcript and protein than control transformants and were demonstrated to be stably transformed with between 1 and 5 copies of the T-DNA. CAD activity against coniferaldehyde, and sinapaldehyde in stems of silenced lines was significantly reduced as was overall lignin and cutin. Glucose release from ground samples pretreated with ammonium hydroxide and digested with cellulases was greater than in control transformants. When stained with the lignin and cutin specific stain phloroglucinol-HCl the staining intensity of one line indicated greater incorporation of hydroxycinnamyl aldehydes in the lignin

    Metabolism of halophilic archaea

    Get PDF
    In spite of their common hypersaline environment, halophilic archaea are surprisingly different in their nutritional demands and metabolic pathways. The metabolic diversity of halophilic archaea was investigated at the genomic level through systematic metabolic reconstruction and comparative analysis of four completely sequenced species: Halobacterium salinarum, Haloarcula marismortui, Haloquadratum walsbyi, and the haloalkaliphile Natronomonas pharaonis. The comparative study reveals different sets of enzyme genes amongst halophilic archaea, e.g. in glycerol degradation, pentose metabolism, and folate synthesis. The carefully assessed metabolic data represent a reliable resource for future system biology approaches as it also links to current experimental data on (halo)archaea from the literature
    corecore