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2 Swedish e-Science Research Centre (SeRC), Linne FLOW Centre, KTH Mechanics,

Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
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Abstract. This paper presents wind tunnel measurements of the NREL S826 airfoil

at Reynolds number Re = 100, 000 for angles of attack in a range of −10o to 25o, and

the corresponding Large Eddy Simulation (LES) for selected angles of attack.

The measurements have been performed at the low speed wind tunnel located

at Fluid Mechanics laboratory of the Technical University of Denmark (DTU). Lift

coefficient is obtained from the forge gauge measurements while the drag is measured

according to the integration of the wake profiles downstream of the airfoil. The pressure

distribution is measured by a set of pressure taps on the airfoil surface.

The lift and drag polars are obtained from the LES computations using DTU’s in-

house CFD solver, EllipSys3D, and good agreement is found between the measurement

and the simulations. At high angles of attack, the numerical computations tend to

over-predict the lift coefficients, however, there is a better agreement between the drag

measurements and computations. It is concluded that LES computations are able to

capture the lift and drag polars as well as the pressure distribution around the airfoil

with an acceptable accuracy.

1. Introduction

Recently, a series of blind test comparisons on measurements of a model scale wind

turbine was conducted in a low speed wind tunnel facility at Norwegian University of

Science and Technology (NTNU), with several researchers invited to perform numerical

simulations and predict the rotor performance and wake characteristics. The design

Reynolds number for the rotor airfoil sections was of the order of Re = 100, 000 and
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one of the challenges of performing the comparison with the experimental results was

the lack of accurate tabulated airfoil data at such Reynolds numbers. Therefore, a wind

tunnel measurement campaign was concucted in DTU’s Fluid Mechanics laboratory to

obtain the required lift and drag polars. The campaign was extended to include pressure

measurements on the airfoil surface as well. Moreover, a numerical study was carried

out to quantify capability of LES in predicting the pressure distribution as well as the

lift and drag coefficients.

Wind tunnel measurements for the sake of finding airfoil characteristics have been

widely investigated throught the years [1, 2, 3]. LES, on the other hand, is a rather

new technique and has not been of high interest for the airfoil computations due to its

high computational expense. Nevertheless, recent studies have proved its capability for

airfoil simulations [11], thanks to increased computational power and elaboration of LES

techniques. Recently, a study was performed with the aim of investigating the potential

of LES in predicting the airfoil characteristics at high Reynolds numbers [10]. The study

included simulations of the flow around an Aerospatiale A-airfoil at Re = 2×106 and an

angle of attack α = 13.3o. Different aspects of the simulations were investigated, such

as the effects of the mesh resolution, size of the computational domain, sub-grid scale

(SGS) modeling, near-wall treatment, and transition prediction. It was concluded that

the mesh resolution and the numerical span width have a significant impact on predicting

an accurate flow. Eisenbach and Friedrich [21] conducted LES of a NACA 4415 profile

placed between two flat plates at α = 18o using the dynamic Smagorinsky model and

an immersed boundary method for treatment of the wall. Uranga et al. [4] performed

LES of the flow over a Selig-Donovan SD7003 airfoil for a range of Reynolds numbers

between 10, 000 and 60, 000 at α = 13.3o using a high-order discontinuous Galerkin

method. They used an implicit LES modeling, in which the effect of the SGS model is

applied through the numerical dissipation of the discretization schemes. Ying and Wang

[18] used an implicit model to simulate the flow around SD7003 airfoil at Re = 60, 000

using a high-order spectral difference method. The SD7003 airfoil was chosen in all

cases because of the availability of the experimental data [2]. Recent investigations of

the airfoil flow is reported by Venugopal et al. [16] who performed an LES of a DU96

airfoil at the near-stall angle of attack at Re = 1.5× 106.

2. Experimental set-up

The experiments are performed at the Fluid Mechanics laboratory at the Technical

University of Denmark. The incompressible, low speed, open-loop wind tunnel facility

shown in figure 1 has a cross section of 0.5m× 0.5m, a contraction ratio of 1 : 12.5, and

a maximum speed-up capability of U∞ = 65m/s. The turbulence intensity of the empty
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wind tunnel is 0.22% at U∞ = 15m/s, corresponding to a chord Reynolds number of

100,000 for the airfoil considered in the measurements. The intensity drops to 0.15%

at U∞ = 50m/s. Surface pressure is measured using 30 pressure tabs along the chord

of the tested airfoil model. The dash-lines shown on the figure 1 are not instrumented.

Instead, the pressure data for the second point in the pressure side from the trailing

edge (TE) and the first point from the leading edge (LE) are extrapolated from their

two neighbouring points (the same side) and the pressure in the TE is interpolated from

the second points in the pressure and suction sides. The airfoil has a chord and span

of of 100 and 500 milimeters, respectively. The lift coefficients are measured using load

cells and the drag coefficient is obtained by the wake rake measurements placed 1.6c

downstream of the airfoil. The angle of attack is set by means of a servo motor.
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Figure 1: (left) Wind tunnel test section. (right) The CNC-machined S826 airfoil and the
pressure tap locations.

Pressure measurements are performed with a sampling frequency of 125Hz for a duration

of 10 sec at each angle of incidence in the upstroke (from -10 to +25) as well as downstroke

(+25 to -10) pitching of the airfoil. The jump from each angle to the next one is

performed using a step function and the corresponding recorded data are removed to

ensure independence from the transition period. More information on the experimental

set-up and a full set of benchmarks can be found in Sarlak [8].

3. The numerical simulation set-up

For the numerical simulations, the block structured general purpose flow solver

Ellipsys3D, developed by Sørensen [7] and Michelsen [6] is used. In EllipSys3D, the

incompressible Navier-Stokes equations are discretized using a finite volume method for

the primitive variables (velocity and pressure). Discretization of the diffusive terms is
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handled by 2nd order central differencing schemes (CDS) and for the convective terms,

a blend of CDS and QUICK scheme, is used for the purpose of numerical stability and

accuracy. Time is discretized using a second order backward Euler scheme and the

solution is marched in time using inner time stepping where the number of each pseudo

time step can be either specified or remain as a function of the residuals. Pressure

checker-boarding is prevented by using Rhie-Chow interpolation [17] on a collocated

grid arrangement and the pressure correction equation is solved using PISO algorithm.

The filtered Navier-Stokes equation reads in its vectorized form as

∂v

∂t
+ v · ∇v = −∇p

ρ
+∇ · [(ν + νsgs)∇v] +

f

ρ
, (1)

where ρ and ν are the fluid density and kinematic viscosity respectively. v represents

the filtered velocity vector, p is the modified pressure, and f is the external body force

acting on the flow due to the presence of the wind turbine. νsgs is the eddy viscosity

to be specified by the SGS model. The mixed scale SGS model (MO) by [13] was

chosen for all of the test cases. In the MO model, the eddy viscosity is modeled as

νsgs = cmo∆
1.5q0.25c |Ω̄|0.5 using cmo = 0.01, where ∆(i, j, k) = (dx.dy.dz)

1
3 is the implicit

filter width, qc is the SGS kinetic energy obtained with an explicit filtering and Ω is

the vorticity vector magnitude. The simulations have been performed on two types of

grid as shown in figure 2. A traditional C-mesh was used to perform simulations at low

angles of attack while for higher angles of attack, a hybrid mesh consisting of O and

H-mesh configurations, called the Tunnel mesh hereafter, was used in a numerical wind

tunnel. The Tunnel grid is similar to the the experimental wind tunnel’s test section

but with a smaller span width. The flow is always parallel to the X coordinate and the

airfoil is rotated to set angles of attack.

To have the least dissipation error from the time discretizaton method, a non-

dimentional time step of dt∗ = dtU0/c is chosen to ensure that the CFL number is

kept below 1, although an implicit time stepping is used. To choose the mesh size, the

skin friction is first estimated according to empirical relations (e.g. Cf = [2 log10(Rex)−
0.65]−2.3 for Rex ≤ 109 [19]), wall shear stress defined as τw = Cf · 1

2 ρU
2
∞ and

the friction velocity determined from uτ =
√

τw
ρ . Finally, the desired grid spacing is

computed according to the wall units y = y+µ/ρ uτ . The grid resolution in wall units is

chosen according to the following wall-resolved criteria [9].

• Chordwise : dx+ = dx
y+ ∼ 50− 130; where y+ = yuτ

ν and uτ =
√

τ
ρ ,

• Wall-normal : dy+ ∼ 1− 2 ,

• Spanwise : dz+ ∼ 15− 40;
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(a) (b)

(c) (d)

Figure 2: Computational domain using (a,b) the C-mesh, and (c,d) the Tunnel mesh. The
bold lines represent the edges of each computational block.

where the small letters (x,y,z) denote the chordwise, wall-normall, and spanwise

directions on the airfoil surface. This range of grid spacing requires a highly-resolved

near-wall resolution. On the other hand, a large span to chord ratio is needed to resolve

the stall cells accurately. Therefore a balance is required between the number of mesh

points in the spanwise direction and the span-to-chord ratio. From previous studies, it

has been found that the effect of spanwise resolution is more important than the span

width and that a span to chord ratio of at least 0.12 should be used to predict proper

3D flow features [11]. In this paper, the spanwise resolution requirements are preferred

to the span width. In two cases, however, highly resolved simulations with aspect ratio

of s/c = 1 is used. A homogenuous free-stream turbulence with an intensity of 0.2%

is introduced at 1c upstream of the airfoil to mimic the free stream turbulence of the

tunnel. Simulations are run for at least two NTUs1 and the statistics are averaged for

approximately four NTUs to ensure that the statistics are converged. Table 1 shows a

description of different test cases.

1 Non-dimensional Time Unit NTU = c/u0 is calculated as the time it takes for a flow particle to pass
the airfoil chord
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Table 1: Simulation setup for the airfoil LES computations.

Mesh type αo Re Nζ ×Nη ×N †z s/c

C -6 to 4‡ 100,000 960× 320× 64 0.5
Tunnel 6 to 20‡ 100,000 1024× 256× 64− 320? [0.12 1]
† Chordwise, wall normal, and spanwise resolution, respectively.
‡ A range of AoAs with steps of 2 degrees was performed.
? Different spanwise resolutions corresponding to different span widths are used.
? Unless otherwise stated explicitly, s/c = 0.12 and Nz = 64 is used for all computations.

4. Simulation results

This section presents a comparison of the pressure distribution as well as lift and drag

coefficients obtained from LES computations with the wind tunnel measurements for

a range of angles of attack and Reynolds numbers 2. The instantaneous streamwise

velocity and turbulence kinetic energy contours are plotted in figure 3 for Re = 100, 000

at α = 12o. A grid resolution of 1024×256×64 with an aspect ratio of 0.12 is employed.

As can be seen, contours of the TKE show a peak of turbulence at the separation point

which is decreased downstream until the wake recovers.

(a) (b)

Figure 3: Snapshots of (a) instantaneous streamwise velocity, (b) resolved turbulence kinetic
energy for Re = 100, 000 at α = 12o.

4.1. Comparison of pressure distribution over the airfoil

This section presents pressure distributions on the airfoil for different angles of attack

incremented from α = −8o to α = 20o. Figure 4 shows the pressure distributions

for α = −6o,−2o, 0o, 2o. As can be seen, a reasonably good agreement between LES

computations and the measurements is obtained over the entire airfoil surface.

The Cp distributions for the positive angles of attack of 6o, 8o, 10o, and 20o are plotted

in figure 5. For α = 6o, the LES data show close similarity in the magnitude of the peak

2 For the measurements, the error bounds are calculated based on the standard deviation of the measured
pressure distribution and it is found that the maximum uncertainties are less than 1% of the mean values,
with higher uncertainties close to the LE on the upper surface of the airfoil.
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Figure 4: Comparison of Cp for Re=100,000 at α = −6o,−2o, 0o, and 2o.

pressure and pressure distribution for up to half a chord length downstream of the LE

while the experimental data exhibit a separation at x/c ∼ 0.7 which is not captured in

LES due to unability of the numerical method in finding the exact transition location.

This is most likely due to the inability of the SGS model and/or a slight inconsistency

between the free-stream turbulence levels in the experiments and numerical simulations.

The closest match between LES data and the measurements is obtained at α = 8o where

the pressure distribution falls on top of the measurements at all angles of attack.

At α = 10o, as shown in figure 5, LES shows a separation point starting at x/c = 0.1

and reattaching at x/c = 0.4. From figure 5(d), it is seen that the pressure distribution

at α = 20o is also in good agreement with the measurement data 3.

3 As can be seen from figure 5(d), the numerical Cp distribution for α = 20o does not go from 0 to 1
unlike the other cases and the measurements. This is because a coarse grid is used which does not have
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Figure 5: Comparison of Cp for Re=100,000 at α = 6o, 8o, 10o, and 20o.

4.2. Comparison of lift and drag polars

The final investigation is obtained between the time-averaged lift and drag polars

predicted with LES and compared with experiments. Lift and drag coefficients are

calculated by integrating the pressure forces and the skin friction on the airfoil,

CL =
Fpy + Fνy
0.5ρU2

0 cs
, CD =

Fpx + Fνx
0.5ρU2

0 cs
. (2)

where Fpy and Fpx are the pressure force in the vertical and streamwise directions.

Similarly, Fνy and Fνx are viscous forces in vertical and streamwise directions. c and s

are the chord and span lengths, respectively. For the experiments, the lift is obtained

a grid point in the LE.
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directly from the force gauge measurement and the drag is calculated based on the

integration of the wake profiles.

Figure 6 shows the lift and drag comparisons for the LES versus experiments.

The experiments performed by Sarmast [20] is also included. As can be seen, LES

computations agrees with the measurements for pitching angles up to α = 8o although

LES tends to over-predict the lift coeficients. The numerical simulations start to deviate

from the measurements at higher angles of attack. Another difference is that the deep

stall for numerical simulations occur at α ∼ 12o while the experimental results suggest an

earlier stall. The differences between LES results and the measurements can most likely

be explained by the inability of the LES to find the exact location of the transition point

with the given numerical set-up, including the limitations of the chosen SGS model,

numerical discretization schemes, and the limited span width ( sc |numerical = 1 versus
s
c |experimental = 5).
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Figure 6: Comparison of lift and drag polars for Re=100,000.

Similar to the lift coefficients, the LES and the experimental results exhibit a good

agreement between the CD polars for the low values and the differences appear in higher

angles of attack. At α ≥ 15o, while the accuracy of the current measurements is higher

than those made by Sarmast [20] (due to the more accurate measurement equipment),

the reliability of measurements is lower than at smaller pitching angles. This is because

the drag is computed using the wake deficit and at high angles, the wake rake in the

current set-up is not wide enough to capture the whole wake profile accurately.
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5. Conclusion

In this paper, wind tunnel measurements and LES of the S826 airfoil were presented and

lift and drag polars as well as pressure distributions on the airfoil surface were obtained

at a Reynolds number of Re = 100, 000 for different angles of attack. An LES study was

also performed, in which the pressure distribution as well as lift and drag polars obtained

using the LES computations were compared with the wind tunnel measurements. For

the LES computations, a mixed scale SGS model was used and no explicit treatment was

applied for the transition point. The lift and drag polars from the numerical simulations

were found to be in acceptable agreement with the measurement, although at high angles

of attack, the numerical computations over-predict the lift coefficients. As a general

conclusion, it has been shown that LES is capable of capturing the main features of flow

around the airfoil in terms of lift and drag polars as well as pressure distribution.
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