23 research outputs found

    A Minireview of the Promising Drugs and Vaccines in Pipeline for the Treatment of COVID-19 and Current Update on Clinical Trials

    Get PDF
    The COVID-19 is affecting thousands of peoples day by day and continues to spread across the world. The present review has focused on promising repurposing drugs, including remdesivir, lopinvar/retinovar, favipiravir, hydroxychloroquine, monoclonal antibodies and vaccines against the SARS-CoV-2 infection. Besides, our review has also focused on many organizations that are in the race to develop vaccines using various approaches including DNA, RNA, viral vectors and subunit proteins against this highly contagious respiratory disease. The spike protein is being studied by scientists all over the world to develop potential vaccines. The antiviral drugs, antibodies and vaccines developed by various researchers around the world have entered clinical trials in humans. The current clinical trials for antiviral agents and vaccines with promising outcomes are being discussed. So far, four vaccines developed by the Pfizer-BioNTech vaccine, the Johnson and Johnson vaccine and two AstraZeneca vaccines (produced by SKBio in the Republic of Korea and Serum Institute of India) are approved by the World Health Organization for public use

    Effects of fluoxetine on functional outcomes after acute stroke (FOCUS): a pragmatic, double-blind, randomised, controlled trial

    Get PDF
    Background Results of small trials indicate that fluoxetine might improve functional outcomes after stroke. The FOCUS trial aimed to provide a precise estimate of these effects. Methods FOCUS was a pragmatic, multicentre, parallel group, double-blind, randomised, placebo-controlled trial done at 103 hospitals in the UK. Patients were eligible if they were aged 18 years or older, had a clinical stroke diagnosis, were enrolled and randomly assigned between 2 days and 15 days after onset, and had focal neurological deficits. Patients were randomly allocated fluoxetine 20 mg or matching placebo orally once daily for 6 months via a web-based system by use of a minimisation algorithm. The primary outcome was functional status, measured with the modified Rankin Scale (mRS), at 6 months. Patients, carers, health-care staff, and the trial team were masked to treatment allocation. Functional status was assessed at 6 months and 12 months after randomisation. Patients were analysed according to their treatment allocation. This trial is registered with the ISRCTN registry, number ISRCTN83290762. Findings Between Sept 10, 2012, and March 31, 2017, 3127 patients were recruited. 1564 patients were allocated fluoxetine and 1563 allocated placebo. mRS data at 6 months were available for 1553 (99·3%) patients in each treatment group. The distribution across mRS categories at 6 months was similar in the fluoxetine and placebo groups (common odds ratio adjusted for minimisation variables 0·951 [95% CI 0·839–1·079]; p=0·439). Patients allocated fluoxetine were less likely than those allocated placebo to develop new depression by 6 months (210 [13·43%] patients vs 269 [17·21%]; difference 3·78% [95% CI 1·26–6·30]; p=0·0033), but they had more bone fractures (45 [2·88%] vs 23 [1·47%]; difference 1·41% [95% CI 0·38–2·43]; p=0·0070). There were no significant differences in any other event at 6 or 12 months. Interpretation Fluoxetine 20 mg given daily for 6 months after acute stroke does not seem to improve functional outcomes. Although the treatment reduced the occurrence of depression, it increased the frequency of bone fractures. These results do not support the routine use of fluoxetine either for the prevention of post-stroke depression or to promote recovery of function. Funding UK Stroke Association and NIHR Health Technology Assessment Programme

    RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis

    No full text
    The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy

    The Physiological and Pathological Role of Tissue Nonspecific Alkaline Phosphatase beyond Mineralization

    No full text
    Tissue-nonspecific alkaline phosphatase (TNAP) is a key enzyme responsible for skeletal tissue mineralization. It is involved in the dephosphorylation of various physiological substrates, and has vital physiological functions, including extra-skeletal functions, such as neuronal development, detoxification of lipopolysaccharide (LPS), an anti-inflammatory role, bile pH regulation, and the maintenance of the blood brain barrier (BBB). TNAP is also implicated in ectopic pathological calcification of soft tissues, especially the vasculature. Although it is the crucial enzyme in mineralization of skeletal and dental tissues, it is a logical clinical target to attenuate vascular calcification. Various tools and studies have been developed to inhibit its activity to arrest soft tissue mineralization. However, we should not neglect its other physiological functions prior to therapies targeting TNAP. Therefore, a better understanding into the mechanisms mediated by TNAP is needed for minimizing off targeted effects and aid in the betterment of various pathological scenarios. In this review, we have discussed the mechanism of mineralization and functions of TNAP beyond its primary role of hard tissue mineralization

    Prophylactic supplementation of resveratrol is more effective than its therapeutic use against doxorubicin induced cardiotoxicity.

    No full text
    Resveratrol (RSV), a polyphenolic compound and naturally occurring phytoalexin, has been reported to exert cardio-protective effects in several animal studies. However, the outcome of initial clinical trials with RSV was less effective compared to pre-clinical studies. Therefore, RSV treatment protocols need to be optimized. In this study we evaluated prophylactic versus therapeutic effect of resveratrol (RSV) in mitigating doxorubicin (Dox)-induced cardiac toxicity in rats. To investigate prophylactic effects, RSV was supplemented for 2 weeks along with Dox administration. After 2 weeks, Dox treatment was stopped and RSV was continued for another 4 weeks. To study therapeutic effects, RSV treatment was initiated after 2 weeks of Dox administration and continued for 4 weeks. Both prophylactic and therapeutic use of RSV mitigated Dox induced deterioration of cardiac function as assessed by echocardiography. Also RSV treatment (prophylactic and therapeutic) prevented Dox induced myocardial damage as measured by cardiac enzymes (LDH and CK-MB) in serum. Which was associated with decrease in Dox induced myocardial apoptosis and fibrosis. Interestingly our study also reveals that prophylactic use of RSV was more effective than its therapeutic use in mitigating Dox induced apoptosis and fibrosis in the myocardium. Therefore, prophylactic use of resveratrol may be projected as a possible future adjuvant therapy to minimize cardiotoxic side effects of doxorubicin in cancer patients

    Graphene Oxide-Gold Nanosheets Containing Chitosan Scaffold Improves Ventricular Contractility and Function After Implantation into Infarcted Heart

    No full text
    Abnormal conduction and improper electrical impulse propagation are common in heart after myocardial infarction (MI). The scar tissue is non-conductive therefore the electrical communication between adjacent cardiomyocytes is disrupted. In the current study, we synthesized and characterized a conductive biodegradable scaffold by incorporating graphene oxide gold nanosheets (GO-Au) into a clinically approved natural polymer chitosan (CS). Inclusion of GO-Au nanosheets in CS scaffold displayed two fold increase in electrical conductivity. The scaffold exhibited excellent porous architecture with desired swelling and controlled degradation properties. It also supported cell attachment and growth with no signs of discrete cytotoxicity. In a rat model of MI, in vivo as well as in isolated heart, the scaffold after 5 weeks of implantation showed a significant improvement in QRS interval which was associated with enhanced conduction velocity and contractility in the infarct zone by increasing connexin 43 levels. These results corroborate that implantation of novel conductive polymeric scaffold in the infarcted heart improved the cardiac contractility and restored ventricular function. Therefore, our approach may be useful in planning future strategies to construct clinically relevant conductive polymer patches for cardiac patients with conduction defects
    corecore