98 research outputs found

    Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress

    Get PDF
    Hepatocellular cancer is the fifth most frequent cancer in men and the eighth in women worldwide. Established risk factors are chronic hepatitis B and C infection, chronic heavy alcohol consumption, obesity and type 2 diabetes, tobacco use, use of oral contraceptives, and aflatoxin-contaminated food. Almost 90% of all hepatocellular carcinomas develop in cirrhotic livers. In Western countries, attributable risks are highest for cirrhosis due to chronic alcohol abuse and viral hepatitis B and C infection. Among those with alcoholic cirrhosis, the annual incidence of hepatocellular cancer is 1-2%. An important mechanism implicated in alcohol-related hepatocarcinogenesis is oxidative stress from alcohol metabolism, inflammation, and increased iron storage. Ethanol-induced cytochrome P-450 2E1 produces various reactive oxygen species, leading to the formation of lipid peroxides such as 4-hydroxy-nonenal. Furthermore, alcohol impairs the antioxidant defense system, resulting in mitochondrial damage and apoptosis. Chronic alcohol exposure elicits hepatocyte hyperregeneration due to the activation of survival factors and interference with retinoid metabolism. Direct DNA damage results from acetaldehyde, which can bind to DNA, inhibit DNA repair systems, and lead to the formation of carcinogenic exocyclic DNA etheno adducts. Finally, chronic alcohol abuse interferes with methyl group transfer and may thereby alter gene expressio

    Colorectal Cancer and Alcohol

    Get PDF

    Genetic polymorphisms of manganese-superoxide dismutase and glutathione-S-transferase in chronic alcoholic pancreatitis

    Get PDF
    Chronic alcohol consumption is a major risk factor for the development of chronic pancreatitis. However, chronic pancreatitis occurs only in a minority of heavy drinkers. This variability may be due to yet unidentified genetic factors. Several enzymes involved in the degradation of reactive oxidants and xenobiotics, such as glutathione-S-transferase P1 (GSTP1) and manganese-superoxide dismutase (MnSOD) reveal functional polymorphisms that affect the antioxidative capacity and may therefore modulate the development of chronic pancreatitis and long-term complications like endocrine and exocrine pancreatic insufficiency. Two functional polymorphisms of the MnSOD and the GSTP1 gene were assessed by polymerase chain reaction and restriction fragment length polymorphism in 165 patients with chronic alcoholic pancreatitis, 140 alcoholics without evidence of pancreatic disease and 160 healthy control subjects. The distribution of GSTP1 and MnSOD genotypes were in Hardy-Weinberg equilibrium in the total cohort. Genotype and allele frequencies for both genes were not statistically different between the three groups. Although genotype MnSOD Ala/Val was seemingly associated with the presence of exocrine pancreatic insufficiency, this subgroup was too small and the association statistically underpowered. None of the tested genotypes affected the development of endocrine pancreatic insufficiency. Polymorphisms of MnSOD and GSTP1 are not associated with chronic alcoholic pancreatitis. The present data emphasize the need for stringently designed candidate gene association studies with well-characterized cases and controls and sufficient statistical power to exclude chance observation

    Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage

    Get PDF
    This paper is based upon the "8th Charles Lieber's Satellite Symposium" organized by Manuela G. Neuman at the Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA. The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non alcohol -induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism that may be responsible for the development of liver disease as well as the factors that determine the amount, frequency and which type of alcohol misuse leads to liver and gastrointestinal diseases. We aimed to (1) describe the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH) and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastrointestinal cancer and (7) focus on factors that aggravate the severity of organ-damage. The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD with simple fatty infiltrations and chronic alcoholic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular.and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the intestine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbiota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in obesity and regresses the liver steatosis. Evidence on the positive role of moderate alcohol consumption on heart and metabolic diseases as well on reducing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has been discussed. In addition to the original data, we searched the literature (2008-2016) for the latest publication on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google Scholar). The intention of the eighth symposia was to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism. (C) 2017 Elsevier Inc. All rights reserved.Peer reviewe

    Alcoholic and non-alcoholic steatohepatitis

    Get PDF
    This paper is based upon the “Charles Lieber Satellite Symposia” organized by Manuela G. Neuman at the Research Society on Alcoholism (RSA) Annual Meetings, 2013 and 2014. The present review includes pre-clinical, translational and clinical research that characterize alcoholic liver disease (ALD) and non-alcoholic steatohepatitis (NASH). In addition, a literature search in the discussed area was performed. Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis of ALD. The liver biopsy can confirm the etiology of NASH or alcoholic steatohepatitis (ASH) and assess structural alterations of cells, their organelles, as well as inflammatory activity. Three histological stages of ALD are simple steatosis, ASH, and chronic hepatitis with hepatic fibrosis or cirrhosis. These latter stages may also be associated with a number of cellular and histological changes, including the presence of Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of ethanol metabolizing enzymes such as cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and NASH. Alcohol mediated hepatocarcinogenesis, immune response to alcohol in ASH, as well as the role of other risk factors such as its comorbidities with chronic viral hepatitis in the presence or absence of human deficiency virus are discussed. Dysregulation of hepatic methylation, as result of ethanol exposure, in hepatocytes transfected with hepatitis C virus (HCV), illustrates an impaired interferon signaling. The hepatotoxic effects of ethanol undermine the contribution of malnutrition to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the microbiota are suggested. The clinical aspects of NASH, as part of metabolic syndrome in the aging population, are offered. The integrative symposia investigate different aspects of alcohol-induced liver damage and possible repair. We aim to (1) determine the immuno-pathology of alcohol-induced liver damage, (2) examine the role of genetics in the development of ASH, (3) propose diagnostic markers of ASH and NASH, (4) examine age differences, (5) develop common research tools to study alcohol-induced effects in clinical and pre-clinical studies, and (6) focus on factors that aggravate severity of organ-damage. The intention of these symposia is to advance the international profile of the biological research on alcoholism. We also wish to further our mission of leading the forum to progress the science and practice of translational research in alcoholism

    Evaluation of laboratory tests for cirrhosis and for alcohol use, in the context of alcoholic cirrhosis

    Get PDF
    International audienceLaboratory tests can play an important role in assessment of alcoholic patients, including for evaluation of liver damage and as markers of alcohol intake. Evidence on test performance should lead to better selection of appropriate tests and improved interpretation of results. We compared laboratory test results from 1578 patients between cases (with alcoholic cirrhosis; 753 men, 243 women) and controls (with equivalent lifetime alcohol intake but no liver disease; 439 men, 143 women). Comparisons were also made between 631 cases who had reportedly been abstinent from alcohol for over 60 days and 364 who had not. ROC curve analysis was used to estimate and compare tests' ability to distinguish patients with and without cirrhosis, and abstinent and drinking cases. The best tests for presence of cirrhosis were INR and bilirubin, with areas under the ROC curve (AUCs) of 0.91~\textpm~0.01 and 0.88~\textpm~0.01, respectively. Confining analysis to patients with no current or previous ascites gave AUCs of 0.88~\textpm~0.01 for INR and 0.85~\textpm~0.01 for bilirubin. GGT and AST showed discrimination between abstinence and recent drinking in patients with cirrhosis, including those without ascites, when appropriate (and for GGT, sex-specific) limits were used. For AST, a cut-off limit of 85~units/L gave 90% specificity and 37% sensitivity. For GGT, cut-off limits of 288~units/L in men and 138~units/L in women gave 90% specificity for both and 40% sensitivity in men, 63% sensitivity in women. INR and bilirubin show the best separation between patients with alcoholic cirrhosis (with or without ascites) and control patients with similar lifetime alcohol exposure. Although AST and GGT are substantially increased by liver disease, they can give useful information on recent alcohol intake in patients with alcoholic cirrhosis when appropriate cut-off limits are used

    Genome-wide Association Study and Meta-analysis on Alcohol-Associated Liver Cirrhosis Identifies Genetic Risk Factors

    Get PDF
    International audienceBackground and aims - Only a minority of heavy drinkers progress to alcohol-associated cirrhosis (ALC). The aim of this study was to identify common genetic variants that underlie risk for ALC. Approach and results - We analyzed data from 1,128 subjects of European ancestry with ALC and 614 heavy-drinking subjects without known liver disease from Australia, the United States, the United Kingdom, and three countries in Europe. A genome-wide association study (GWAS) was performed, adjusting for principal components and clinical covariates (alcohol use, age, sex, body mass index, and diabetes). We validated our GWAS findings using UK Biobank. We then performed a meta-analysis combining data from our study, the UK Biobank, and a previously published GWAS. Our GWAS found genome-wide significant risk association of rs738409 in patatin-like phospholipase domain containing 3 (PNPLA3) (odds ratio [OR] = 2.19 [G allele], P = 4.93 × 10 ) and rs4607179 near HSD17B13 (OR = 0.57 [C allele], P = 1.09 × 10 ) with ALC. Conditional analysis accounting for the PNPLA3 and HSD17B13 loci identified a protective association at rs374702773 in Fas-associated factor family member 2 (FAF2) (OR = 0.61 [del(T) allele], P = 2.56 × 10 ) for ALC. This association was replicated in the UK Biobank using conditional analysis (OR = 0.79, P = 0.001). Meta-analysis (without conditioning) confirmed genome-wide significance for the identified FAF2 locus as well as PNPLA3 and HSD17B13. Two other previously known loci (SERPINA1 and SUGP1/TM6SF2) were also genome-wide significant in the meta-analysis. GeneOntology pathway analysis identified lipid droplets as the target for several identified genes. In conclusion, our GWAS identified a locus at FAF2 associated with reduced risk of ALC among heavy drinkers. Like the PNPLA3 and HSD17B13 gene products, the FAF2 product has been localized to fat droplets in hepatocytes. Conclusions - Our genetic findings implicate lipid droplets in the biological pathway(s) underlying ALC
    corecore