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This paper is based upon the “8th Charles Lieber's Satellite Symposium” organized byManuela G. Neuman at the
Research Society on Alcoholism Annual Meeting, on June 25, 2016 at New Orleans, Louisiana, USA.
The integrative symposium investigated different aspects of alcohol-induced liver disease (ALD) as well as non-
alcohol-induced liver disease (NAFLD) and possible repair. We revealed the basic aspects of alcohol metabolism
that may be responsible for the development of liver disease as well as the factors that determine the amount,
frequency andwhich type of alcoholmisuse leads to liver and gastrointestinal diseases.We aimed to (1) describe
the immuno-pathology of ALD, (2) examine the role of genetics in the development of alcoholic hepatitis (ASH)
and NAFLD, (3) propose diagnostic markers of ASH and non-alcoholic steatohepatitis (NASH), (4) examine age
and ethnic differences as well as analyze the validity of some models, (5) develop common research tools and
biomarkers to study alcohol-induced effects, 6) examine the role of alcohol in oral health and colon and gastro-
intestinal cancer and (7) focus on factors that aggravate the severity of organ-damage.
The present review includes pre-clinical, translational and clinical research that characterizes ALD and NAFLD.
Strong clinical and experimental evidence lead to recognition of the key toxic role of alcohol in the pathogenesis
of ALDwith simple fatty infiltrations and chronic alcoholic hepatitiswith hepaticfibrosis or cirrhosis. These latter
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stages may also be associated with a number of cellular and histological changes, including the presence of
Mallory's hyaline, megamitochondria, or perivenular and perisinusoidal fibrosis. Genetic polymorphisms of eth-
anol metabolizing enzymes and cytochrome p450 (CYP) 2E1 activation may change the severity of ASH and
NASH. Other risk factors such as its co-morbidities with chronic viral hepatitis in the presence or absence of
human deficiency virus were discussed. Dysregulation of metabolism, as a result of ethanol exposure, in the in-
testine leads to colon carcinogenesis. The hepatotoxic effects of ethanol undermine the contribution of malnutri-
tion to the liver injury. Dietary interventions such as micro and macronutrients, as well as changes to the
microbiota have been suggested. The clinical aspects of NASH, as part of the metabolic syndrome in the aging
population, have been presented. The symposium addressed mechanisms and biomarkers of alcohol induced
damage to different organs, as well as the role of the microbiome in this dialog. The microbiota regulates and
acts as a key element in harmonizing immune responses at intestinal mucosal surfaces. It is known that microbi-
ota is an inducer of proinflammatory T helper 17 cells and regulatory T cells in the intestine. The signals at the
sites of inflammation mediate recruitment and differentiation in order to remove inflammatory inducers and
promote tissue homeostasis restoration. The change in the intestinal microbiota also influences the change in
obesity and regresses the liver steatosis.
Evidence on the positive role ofmoderate alcohol consumption on heart andmetabolic diseases aswell on reduc-
ing steatosis have been looked up. Moreover nutrition as a therapeutic intervention in alcoholic liver disease has
been discussed. In addition to the original data, we searched the literature (2008–2016) for the latest publication
on the described subjects. In order to obtain the updated data we used the usual engines (Pub Med and Google
Scholar).
The intention of the eighth symposia was to advance the international profile of the biological research on alco-
holism.We also wish to further our mission of leading the forum to progress the science and practice of transla-
tional research in alcoholism.

© 2017 Elsevier Inc. All rights reserved.
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1. Lieber's and his colleagues' legacy

Manuela G. Neuman M.Sc., Ph.D.
Ethanol is first metabolized in the liver to acetaldehyde (Lieber,

1997, 1988a). Also this metabolic pathway is present in the hepato-
cyte cytosol via a reaction catalyzed by the enzyme alcohol dehydro-
genase (ADH) and this process may occur in the entire digestive tract
leading to inflammation and chronic diseases. Subsequently the ac-
etaldehyde is metabolized to acetate in the mitochondria being cat-
alyzed by acetaldehyde dehydrogenase (ALDH). Like ADH, ALDH
has multiple isoforms with differing activities in special populations
(Sun et al., 2002).

Alcohol oxidation requires initial binding and reduction of the
coenzyme nicotinamide-adenine dinucleotide (NADN). Mitochon-
drial NADN is oxidized through the electron transport chain by
the specific enzyme NAD-dehydrogenase. Acetaldehyde also
binds to macromolecules including nucleic acids, lipids and pro-
teins, leading to autoimmune reactivity (Lewis and Zimmerman,
1998).
Lieber's biological research on alcohol-induced toxic effects led to the
discovery of the cytochromep450 (CYP) 2E1-dependentmicrosomal eth-
anol oxidizing system (MEOS) (Lieber and DeCarli, 1968, 1970). MEOS
has been involved in alcohol-drug interactions (Lieber, 1988b; Lieber
and De Carli, 1991), alcohol-induced fatty liver (Lieber et al., 1975) and
non-alcoholic fatty liver disease (NAFLD) (Lieber, 2004). The diverse as-
pects of the damage include the character of the injury, the mechanism
of the hepatotoxic effects, alcohol dose and frequency of exposure, and
the medical and social importance (Lieber, 1978).

Epidemiological and experimental evidence has led to recognition of
the key toxic role of alcohol in the pathogenesis of alcoholic liver disease
(ALD) (Zimmerman, 1999). Also, the proven direct hepatotoxic effects
of ethanol have undermined the observation that the hepatic disease
of alcoholism is due to the contribution of malnutrition to the liver inju-
ry of alcoholism and evolution of alcoholic cirrhosis was defined
(Zimmerman, 1955). The efficiency of alcohol as a substrate for energy
production appears to be influenced by the amount of both alcohol and
fat consumption as well as by gender (Falck-Ytter and McCullough,
2000).
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Frenzer et al. (2002) also described the polymorphism in alcohol-
metabolizing enzymes, glutathione S-transferases and apolipoprotein
E that increases susceptibility to alcohol-induced cirrhosis and chronic
pancreatitis.

ALD may coexist with other organ damage related to alcohol mis-
use, in the presence of therapeutics (Zimmerman and Maddrey,
1995). In addition alcohol can affect the pharmacokinetics of drugs
by altering gastric emptying or liver metabolism. On the other hand
therapeutics and or drugs of misuse may affect the pharmacokinetics
of alcohol by altering gastric emptying and inhibiting gastric alcohol
dehydrogenase (ADH), important in the first-pass metabolism
(Lieber, 1988a). Castle and colleagues (2016) identify (2005–2011)
the incidences of adverse drug reactions with alcohol involvement in
the emergency departments of the Unites States of America and com-
pared characteristics and disposition between these visits and visits of
patients with adverse drug reactions without alcohol incidence. The
visits involving alcohol-induced adverse drug reactions increased for
males and females with ages 21 to 34 and females with ages over
55. Alcohol involvement increased odds of more serious outcomes
from reactions. Central nervous system agents were the most common
medications (59.1% mainly opioids and psychotherapeutic agents, in-
cluding antidepressants; Neuman et al., 2006). There is a potential in-
teraction between alcohol and H2 receptor antagonists such as
cimetidine (Weinberg et al., 1998). The inhibition of the metabolism
of acetaldehyde may cause disulfiram-like reactions. Pharmacodynam-
ic interactions between alcohol and prescription drugs are common,
particularly the additive sedative effects with benzodiazepines and
also with some of the antihistamine drugs; other interactions may
occur with tricyclic antidepressants.

1. Alcohol intakemay be a contributing factor to the disease statewhich
is being treated and may complicate treatment because of various
pathophysiological effects (e.g. impairment of gluconeogenesis and
the risk of hypoglycaemia with oral hypoglycaemic agents).
The combination of nonsteroidal anti-inflammatory drugs and
alcohol intake increases the risk of gastrointestinal haemorrhage
(Zimmerman, 1999).

Moreover, Neuman et al. (1998) demonstrated the role of cytokines
in ethanol-induced hepatocytotoxicity.

The purpose of the innovative research is to use advanced technolo-
gies to elucidate different aspects of alcohol-induced organ damage.
Since 2009, wemeet each year before the Research of Alcoholism annu-
al meeting to celebrate new achievements in understanding the role of
alcohol-induced organ injury.

2. Pathologic mechanisms of cell cycle arrest in alcoholic hepatitis

Samuel W. French, M.D.
Anna May Diehl focused first on the mechanism of regeneration

inhibition of the liver in rats fed ethanol in response to partial hepa-
tectomy (Koteish et al., 2002). The team reported that p21 and p27
were upregulated causing the inhibition of regeneration. Next,
French et al. (2012) reported that p27 and p21 were upregulated in
liver biopsies from patients with alcoholic hepatitis. Next,
Aravinthan et al. (2013) reported that liver biopsies from two co-
horts of alcoholic patients, (ALD and alcoholic cirrhosis) showed an
increased expression of p21 in positive correlation with the degree
of fibrosis. The p21 expression increased focally where the amount
of fibrosis increased focally within the same liver. They showed
that the pan cycle marker (Mcm-2) was upregulated in ALD but the
S phase marker (Cyclin A) and the M phase marker (PH3) were
downregulated, whereas p21 was markedly upregulated. Liver cell
function was decreased, i.e. prothrombin time was increased in
ALD and alcoholic cirrhosis and serum albumin levels were de-
creased in alcoholic cirrhosis. The levels of p21 correlated positively
with the length of event free survival in both the ALD and cirrhosis
cohorts. The Meld score and degree of alcohol consumption correlat-
ed to a lesser degree than the p21 levels. The p21 expression did not
correlate with the grade of steatosis, steatohepatitis or bilirubin
levels, the Meld Score or the amount of alcohol consumed at the
time of the biopsy, in either cohort. There was an association be-
tween senescence measured by an increased hepatocyte p21 expres-
sion and impaired liver function. Increasing senescent liver cell
change may have led to loss of function and liver cell mass, leading
eventually to decompensation and death. This would explain pro-
gressive liver disease, since 81% of hepatocytes in the ALD cohort
over expressed p21. p21 induced senescence is irreversible
(Aravinthan et al., 2013).

A study of liver explants from patients with alcoholic hepatitis with
Mallory-Denk bodies and balloon cell change showed virtual absence of
themarker of regeneration, where only a few hepatocytic nuclei stained
positive for Ki67. Instead the liver cells had changed into hepatic pro-
genitor cells and bile ductules (bile duct metaplasia) (Dubuquoy et al.,
2015).

In a study of liver biopsies from patients with alcoholic hepatitis
where global RNAsequencingwasperformed, an increase in the expres-
sion of p21, p27 and p15 cell cycle inhibitors was found (Liu et al.,
2015a, 2015b). p21 results in CKD inhibition and cell cycle arrest,
preventing the replication of damaged DNA (Ko and Prives, 1996).
p21 specifically inactivates G1 (CDK4 and 6). p21 also inhibits DNA syn-
thesis by binding to and inhibiting proliferating cell nuclear antigen
(PCNA). p21 is under transcriptional control of the p53 tumor suppres-
sor gene.

p15 and 27 increase in response to transforming growth factor β
(TGFβ). TGFβ was upregulated in alcoholic hepatitis when mea-
sured by RNA seq (Liu et al., 2015b) which contributes to growth
arrest (Vermeulen et al., 2003). ATM was also upregulated. ATM
phosphorylates p53 in response to DNA damage, resulting in p21
blocking the cell cycle at the G1/S checkpoint (Vermeulen et al.,
2003).

P27 expressionwas upregulated in the alcoholic hepatitis liver biop-
sy study (Liu et al., 2015a, 2015b) in response to miR-34a expression
upregulation. The miR-34a promoter contains p53 binding sites. p53 is
a strong inhibitor of miR-34a. ThemRNA level of p53was downregulat-
ed. This suggests that miR-34a was upregulated because of the down-
regulation of p53 and upregulation of the expression of p27 by miR-
34a (Liu et al., 2015b). p27 is a cell cycle inhibitor of GO/GI and GI/S
and has been shown to be expressed in the nuclei, which stained posi-
tive in alcoholic hepatitis (Fig. 1).

p27, like p21, plays a dual role as a tumor suppressor and oncogene
(Serres et al., 2012).

p27 is also an inhibitor of the G2/M phase of mitoses as well. p27
also prevents activation of GTPase RhoA regulating actin dynamics
and promotes tumor cell migration and invasion. p27 expression is
high in quiescent cells causing cytokinesis failure (Serres et al.,
2012).

p15 (P15INK4B) is a member of the INK4 family of CDK inhibi-
tors, which specifically inactivates GI CDI (CKD4 and 6). It prevents
the activation of the CDK kinases by cyclin D. Like p27, p15 in-
creases in response to transforming growth factor β (TGFβ) con-
tributing to growth arrest (Vermeulen et al., 2003). p15, like p27
expression, is upregulated by TGFβ in alcoholic hepatitis (Liu et
al., 2015b).

ATM (ataxia-telangiectasis-mutated) and ATR (ataxia and rad3
related) recognize 5DNA damage and phosphorylate the p53 re-
sponse to DNA damage at GI and G2 of the cycle. ATM is upregulat-
ed in alcoholic hepatitis (Liu et al., 2015a). They both respond to
DNA damage by phosphorylating the downstream checkpoint ki-
nases, Chk2 and Chk1, to transduce the damage signal (Elledge,
2015) and phosphorylate NSB1 to cause S phase arrest.

Transforming growth factor β (TGFβ) inhibits cell proliferation
by inducing G1 phase cell cycle arrest. TGFβ induces p15 and p27.



Fig. 1. The liver biopsy slides from patients with alcoholic hepatitis were stained with antibodies to PCNA (A), Cyclin D1 (B), Ki-67 (C), p21 (D) and p27 (E). Only a few scattered nuclei
were positive for Ki67 (arrow). In one of the alcoholic hepatitis biopsies no nuclei stained positive. (F) The arrows point to Mallory Denk bodies staining yellow orange (C). Magnification
(A × 218), (B × 654), (C × 654), (D × 684), (E × 436), (F × 436).
This figure was previously published in Exp. Mol. Pathol. 92: 318–326 (2012).
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Activation and expression of p15 and p27 is upregulated by TGFβ
(Vermeulen et al., 2003). TGFβ expression is upregulated in alco-
holic hepatitis (Liu et al., 2015b).

It is concluded that alcoholic hepatitis inhibits liver cell regeneration
creating senescent hepatocytes through a variety of mechanisms in-
cluding induction of numerous cell cycle inhibitors i.e. p21, p27, p15,
ATM and TGFβ (Fig. 2).
Fig. 2. Schematic overview summarizing the inhibition of the cell cycle fo
The diagram is a modification from Fig. 2 in the paper by Vermeulen et al
3. Mendelian randomization in alcohol research

Samir Zakhari, Ph.D.
For over 30 years, countless epidemiological and molecular studies

have pointed at potential benefits of moderate drinking, including re-
duction in risk of coronary artery disease and all-cause mortality,
among others. While the definition of moderate drinking varies
und in alcoholic liver biopsies from patients with alcoholic hepatitis.
. (2003) This figure was previously published in Exp Mol Pathol 100: 502–505 (2016).

Image of Fig. 2
Image of Fig. 1
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between countries (Furtwængler and De Visser, 2013), the United
States Dietary Guidelines (https://health.gov/dietaryguidelines/2015/)
defines moderate drinking as up to one drink per day for women and
up to two drinks per day for men— and only by adults of legal drinking
age. One alcoholic drink-equivalent is described as containing 14 g
(0.6 fl oz) of pure alcohol; for reference one alcoholic drink-equivalent
comprises 12 fluid ounces of regular beer (5% alcohol), 5 fluid ounces
of wine (12% alcohol), or 1.5 fluid ounces of 80 proof distilled spirits
(40% alcohol) (http://www.ars.usda.gov/nea/bhnrc/fsrg). As early as
1996, Rimm and colleagues have concluded that a substantial portion
of the decreased risk of coronary artery disease is attributed to alcohol
rather than to other components of alcoholic beverages (Rimm et al.,
1996).

While observational epidemiological studies can help identify dis-
ease incidence in a community, they are by necessity associative and
cannot determine cause and effect relationships (Zakhari and Hoek,
2015). Despite best efforts to improve design and analysis of observa-
tional studies, some correctly stated that “Proof is impossible in epide-
miology” (Conner, 2016). This is primarily due to the limited number
of confounders measured in epidemiological studies, and the inevitable
measurement errors in assessing both the exposure and the potential
confounders (Phillips and Smith, 1991, 1993).The problem is more ac-
centuated in alcohol epidemiological studies because all these studies
rely on self-reporting to determine the amount and type of alcoholic
beverage consumed, which inevitably introduces recall bias (Klatsky
et al., 2014). As early as 1965, Hill (Hill, 1965) observed that for epide-
miological observation to infer causation, several criteria should apply,
including: strength of association, consistency, specificity, among
others. The causal link between exposure to a given factor and disease
is of public health concern, as it illuminates the way to prevention and
treatment measures. While observational epidemiology contributed to
the causal discovery of exposure and disease (e.g., asbestos and meso-
thelioma, smoking and lung cancer, and ZIKV infection and microceph-
aly and neurological complications (Rasmussen et al., 2016), alcohol
observational studies fall short of proving cause and effect. Thus, cou-
pling epidemiological studies with molecular and genetic ones would
strengthen the cause and effect relationships. Thus, genetic epidemiolo-
gy can contribute to illuminating cause and effect in health sciences, and
ultimately to a comprehensive molecular understanding of pathogene-
sis (Khoury and Dorman, 1998). Genetic epidemiology focuses on the
association between genetic and phenotypic variation within a popula-
tion to elucidate the genetic basis of disease, often based on single nu-
cleotide polymorphisms (SNPs). The random assignment of genes
within populations is also used to reduce confounding in examining ex-
posure–disease associations, which is known as “Mendelian Randomi-
zation (MR).” This approach was successfully used to examine
environmental exposure and coronary heart disease causation”
(Youngman et al., 2000; Keavney et al., 2006). MR is based on the pre-
mise that the distribution of genetic variants in a population is
Fig. 3. Mendelian Randomization assumptions violated.
independent of environmental and behavioral factors that confound ep-
idemiological associations between exposure and disease. Thus, poly-
morphisms with a well-characterized biological function can be
utilized to study the effect of a given exposure on disease risk. This ap-
proach avoids several potential problems, such as confounding, reverse
causation (biological or due to reporting bias), associative selection bias,
or attenuation by errors in observational epidemiology. (Smith and
Ebrahim, 2004) In other words, the association between a disease and
a polymorphism that serves as a proxy for exposure is not generally sus-
ceptible to confounding factors or to reverse causation that may distort
the interpretations of observational studies. However, the limitations
for the use of MR in epidemiological studies include: 1) a robust associ-
ation between genetic variants and health outcomes must be
established, which so far has proven to be difficult (Colhoun et al.,
2003); 2) any association between a genetic variant and health outcome
may be confounded by linkage disequilibrium between the variant
under consideration and another variant influencing disease risk; 3) if
the variant has pleiotropic effects, interpretation of any associations be-
tween a genetic variant and health outcomesmay not be simple (Smith
and Ebrahim, 2004).

In Fig. 3 we designed how the MR can be wrongly used.

3.1. Alcohol and coronary heart disease

Numerous studies, molecular and epidemiological, about the possi-
ble protective effect of moderate alcohol consumption on CHD risk
have been published, e.g., (Klatsky, 2001). Mechanisms contributing to
the decrease in CHD risk associated with moderate drinking include
an increase in the levels of the protective high density lipoprotein
(HDL) cholesterol (Rimm, 2001; Zakhari and Gordis, 1999).

Mendelian randomization studies are valuable when functional
polymorphisms exist, such as polymorphisms in genes producing alco-
hol metabolizing enzymes. Oxidative alcohol metabolism is carried out
mainly in the liver, where ethanol (alcohol) is metabolized to acetalde-
hyde by alcohol dehydrogenase (ADH) in the cytosol to produce acetal-
dehyde, which is further metabolized to acetate by mitochondrial
aldehyde dehydrogenase (ALDH2) (Zakhari, 2006). Polymorphisms
exist in ADH1B, ADH1C, and ALDH2. Two polymorphic forms of ADH1C
(ADH1C*1 and ADH1C*2) produce two different enzyme subunits, γ1
andγ2,whichmetabolize alcohol in a fast and slowmanner, respective-
ly (Fig. 3). Thus, individuals with the slow oxidizing enzyme, who clear
alcohol at a slower rate, are expected to have a lower risk of coronary ar-
tery disease. Indeed, this was the finding in a case-control study. The
risk ratios in heterozygote (γ1γ2) and homozygous (γ2γ2) was 0.90
and 0.72, respectively compared to homozygous fast alcohol oxidizers
(γ1γ1) (Hines et al., 2001). In addition, γ1γ1 carriers had lower HDL
cholesterol levels than the γ2γ2 slow oxidizers. Thus, the biological
Fig. 4. Polymorphism in ADH and ALDH genes.

https://health.gov/dietaryguidelines/2015/
http://www.ars.usda.gov/nea/bhnrc/fsrg
Image of Fig. 3
Image of Fig. 4


Table 1
Genetic instrument selection.
Modified from Vu et al. (2016).

Genes rs number References LD lipid
loci (r2)

Correlation with
confounders (r)

Final instruments

ADH1B rs1229984 Gelernter et al. (2014), Zuccolo et al. (2009), Agrawal and Bierut (2012), Ferrari et al.
(2012), Li et al. (2011), Bierut et al. (2012), Way et al. (2016)

Did not pass quality control

ADH1B rs2066702 Zuccolo et al. (2009) 0.003 0.011 Yes
ADH1B rs1693457 Zuccolo et al. (2009) 0.001 0.015 Yes
ADH1B/1C rs1789891 Agrawal et al. (2012) 0.001 0.023 Yes
ADH1C rs1693482 Gelernter et al. (2014), Ferrari et al. (2012), Agrawal et al. (2012), Toth et al. (2011) 0.000 0.011 No, in high LD with rs698 and

has lower sample size
ADH1C rs698 Ferrari et al. (2012), Bierut et al. (2012), Agrawal et al. (2012) 0.001 0.015 Yes
ADH1C rs1614972 Zuccolo et al. (2009), Ferrari et al. (2012) Violation HWE assumptions
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effect of these variants is equivalent to moderate alcohol intake. These
findings do not necessarily infer that only people with the slow geno-
type will benefit from moderate drinking, rather the whole population
(regardless of their genotype) would benefit (Smith and Ebrahim,
2003).While therewas no strong association of these polymorphic var-
iants and alcohol intake, the variant of ALDH2 (ALDH2*2) which is virtu-
ally inactive and is prevalent in East Asians is associated with facial and
nausea in response to drinking, resulting in reduced alcohol consump-
tion and protection against alcoholism (Nakamura et al., 2002).
3.3. Polymorphisms in ADH1B, ADH1C, ALDH2

Alcohol dehydrogenase polymorphism is graphically represented in
Fig. 4.

The Atherosclerosis Risk in Communities (ARIC) study used a Men-
delian Randomization (MR) approach to examinewhether alcohol con-
sumption causally affects lipid profile (Vu et al., 2016). Their findings
using over 10,000 subjects support the causal role of regular low-to-
moderate alcohol consumption in increasing high density lipoprotein
(HDL)2-c, reducing total cholesterol, and low density lipoprotein
(LDL)-c, and provides evidence for the novel finding of reducing apoB
and sdLDL-c levels among European Americans. While data in this
study is based on self-reported alcohol consumption, and the MR was
used to reduce reverse causation, sensitivity analysis was conducted
that excluded never drinkers and heavy drinkers. The effect of alcohol
consumption on those lipids remained significant after excluding
heavy drinkers. As shown in Table 1, these SNPs were evaluated by in-
strumental variable (IV) analysis which resulted in rs 1229984, rs
1693482, and rs1614972 removal because they did not meet the IV as-
sumptions, and possible violations including linkage disequilibrium.
The fact that the score was calculated from different genes further
strengthens the causal inference. A study on a Chinese population
using the MR approach showed that the minor ALDH2 allele rs 671was
associatedwith a reduction in alcohol consumption andHDL cholesterol
(Taylor et al., 2015). In addition, Zhang et al. (2015) on over 4800 Chi-
nese men found that ALDH2 genotype is strongly associated with alco-
hol use, but not with alcohol-related health outcomes. However, using
ALDH2 as a genetic instrument in MR studies could be problematic be-
cause the ALDH2 activity can change by aging or medication, and thus
may influence alcohol use and associated diseases (Chen et al., 2013).
Holmes et al. (2014) usingMR to study the association between alcohol
consumption and cardiovascular disease compared alcohol intake and
ischemic heart disease in carriers vs. non-carriers of the ADH1B
rs1229984 allele which encodes the ADH1B enzyme and have conclud-
ed that “reduction of alcohol consumption, even for light to moderate
drinkers, is beneficial for cardiovascular health”. This study was criti-
cized on the British Medical Journal (http://www.bmj.com/content/
349/bmj.g4164/rapid-responses). Roerecke and Rehm (2015) advise
the need for closer examination to ensure the rules of MR.
a) The gene (Z), in this case, rs1229984, must be related to alcohol in-
take (X). This condition is met because carriers of the A allele
drank fewer alcohol units. However, the association is weak since
it is based on self-report (X*).

b) rs1229984must be unrelated to confounders (C) of the alcohol-CVD
response. Results of this study indicate that this genehas other (non-
alcohol-related) effects on CVD such as blood pressure, body mass
index, inflammatory markers, and lipids, which confounds the out-
come. In otherwords, the effect could be due to these risk factors un-
related to alcohol consumption.

c) There should be no direct causal association between rs1229984 and
CVD (Y) that does not go through alcohol use. However, another SNP
(or SNPs) (Z′) may be in linkage disequilibrium with ADH1B and
provide direct causal relation with CVD.

The study also assumes that the ADH1B genotype ONLY influences
drinking amount. That is highly likely to be wrong since ADH1Bmetab-
olizes many other compounds, some of which could also affect the out-
come. It also assumes that the ADH1B genotype is evenly distributed
among ethnic groups. The allocation of the A-allele variants is far from
random, which introduces an entire new set of confounds (such as
many subtle differences inminor allele frequencywithmany socio-eco-
nomic and behavioral differences). In fact the study showed low preva-
lence of the rs1229984 A-allele (average carriage: 7%). Furthermore, 41
out of the 56 studies used (corresponding to 84% of participants) had a
proportion of A-allele carriers less than 10%.

Finally, Roerecke and Rehm (2015) stated that there is not enough
power “to investigate these limitations thoroughly because allele car-
riers are rare in many European countries.” New and novel epidemio-
logical studies with better design, including but not limited to MR
would go a long way in determining causality between alcohol con-
sumption and health effects.

4. Microbiome and non-alcoholic fatty liver disease

Stephen Malnick M.D.
Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifesta-

tion of the metabolic syndrome (Yu et al., 2016). It is a major public
health issue and is a leading cause of cirrhosis, its complications includ-
ing hepatocellular carcinoma and the need for liver transplantation. The
pathogenesis of NAFLD results in inflammation (steatohepatitis) and
fibrosis.

The human gut microbiome consists of about 1014 bacterial cells,
which include N200 species of anaerobic bacteria (Neish, n.d.). This is
100 times more genes than in the human genome (Bäckhed et al.,
2004).

There is an interaction between the liver and the fecal microbiome
(Nicholson et al., 2012). The liver receives 70% of its blood supply
from the intestine via the portal vein (Manzano-Robleda et al., 2015).

http://www.bmj.com/content/349/bmj.g4164/rapid-responses
http://www.bmj.com/content/349/bmj.g4164/rapid-responses
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Thus it is to be expected that there will be an interaction between the
gut microbiome and the liver. Bile acids have been shown to facilitate
the communication between the intestine and the liver (Dawson and
Karpen, 2015). They regulate hepatic glucose, lipid metabolism and in-
flammation via the farsenoid X receptor (FXR) (Fuchs et al., 2013;
Pineda Torra et al., 2003).

There appears to be other factors involved in the development of
NAFLD than the FXR. The ob/ob FXR knockout mice have been shown
to have improved glucose homeostasis including increased glucose
clearance and adipose tissue insulin sensitivity, but hepatic triglyceride
content increased and hepatic insulin sensitivity was unchanged
(Prawitt et al., 2011). This paradoxical effect may be related to the
microbiome. The gut microbiota can impact on the pathogenesis of
NAFLD via several mechanisms.
4.1. Obesity

Obesity is an essential component of the metabolic syndrome. The
gut microbiota has been shown to be an environmental factor that reg-
ulates fat storage. Germ free mice have been shown to gain 42% less
weight compared to mice that acquired a microbiome at birth
(Bäckhed et al., 2004). This was despite the fact that they consumed
29% less chow. Furthermore the intestinal microbiota has been shown
to determine the development of NAFLD in mice. C57BL/6J mice fed a
high fat dietmay respondbydeveloping hyperglycemia, hepatic inflam-
mation and steatosis.When germ-freemice are colonizedwithmicrobi-
ota from such responder mice, there is a transfer of insulin resistance
and increased hepatic steatosis as compared to the mice colonized
with microbiota from non-responder mice (Le Roy and Llopis, 2013).
Other evidence implicating the fecal microbiota in the development of
obesity include mice receiving microbiota from obese donors having a
higher fat gain compared to those receiving from lean donors
(Turnbaugh et al., 2007), and fecal short chain fatty acid levels are 20%
higher in obese humans compared to lean volunteers (Vrieze et al.,
2008; Schwiertz et al., 2010). One of the key recommendations for
treating NAFLD is exercise. Exercise has recently been shown to have
an impact on gut microbial diversity. A group of 40 elite rugby players
from Ireland were shown to have a larger microbial diversity than con-
trol groups with a BMI of b25 kg/m2 or N28 kg/m2 (Clarke et al., 2014).

There has been a marked increase in the prevalence of both obesity
and NAFLD in the last 2 decades. There may be a role for the increased
use of artificial sweeteners in this trend. Mice fed a high fat diet and
also given saccharin in the drinking water have a higher level of
Fig. 5. The link between microbi
serum glucose after a glucose load compared to mice receiving glucose
in their drinking water. This difference was weakened after antibiotic
administration (Suez et al., 2014). Furthermore in human volunteers
consuming the recommended daily dose of artificial sweeteners, there
was a larger increase in serum glucose after an oral glucose load. In ad-
dition a nutritional survey found that those who consumed a high
amount of artificial sweeteners had a significantly higher HBA1c level
than those who did not. Finally this group also found that the microbial
diversity was higher in those responding to an oral glucose test after
consuming a high amount of artificial sweetener for a week compared
to those who did not respond. There may also be a role for bacteria in
protecting from obesity. Akkermansia municiphila has been shown to
be protective against insulin resistance in humans and to be associated
with smaller sized adipocytes (Dao et al., 2016).
4.2. Ethanol

Ethanol has been shown to havemany effects on the gut and liver. It
reaches the liver via the portal vein, induces triglyceride accumulation
in the liver together with hepatic oxidative stress (Sarkola and
Eriksson, 2001) and also increases the gut permeability. Serum ethanol
levels have been found to be higher in patients with NASH compared to
both non-obese and obese patients without NASH (Zhu et al., 2013).

There is, however, controversy overwhether consumption of a small
or moderate amount of alcohol is beneficial for patients with NASH
(Seitz et al., 2015; Sookoian and Pirola, 2016; Roerecke et al., 2016a, b).

Endotoxin is part of the gram negative bacterial cell membrane. Li-
popolysaccharide (LPS) is the active component of endotoxin and inter-
acts with Toll-like receptors to start an inflammatory cascade (Ruiz et
al., 2007). Genetically obese mice have been shown to develop
steatohepatitis after infusion of low doses of LPS (Yang et al., 1997). In
addition in humans higher endotoxin levels have been associated with
NAFLD (Harte et al., 2010).

Inflammasomes are cytoplasmic multi-protein complexes and sen-
sors of pathogen-associatedmolecular patterns (PAMPS).Micewith de-
ficient inflammasome activation have been shown to have increased
NASH severity and furthermore this increased severity can be trans-
ferred to wild-type mice via transfer of microbiota (Henao-Mejia et al.,
2012). Toll-like receptor-4 (TLR-4)-chimeric mice treated with LPS
challenge have been shown to promote hepatic fibrosis by stellate cell
activation (Seki et al., 2007). Thus endotoxins from the bacterial
microbiome promote hepatic inflammation and fibrosis which can pro-
mote the development of NASH and cirrhosis. Choline is an important
ome, dysbiosis and fibrosis.

Image of Fig. 5


Fig. 6. Dietary saturated and unsaturated fats differentially modulate gut microbiome,
metabolome, intestinal barrier and liver injury in a mouse model of alcoholic liver
disease. Abbreviations: EtOH, ethanol; MCT, medium chain triglycerides; SF, saturated
fat; USF, unsaturated fat.
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phospholipid in cell membranes and gut microbiota produce enzymes
that catalyze choline into methylamines which can cause inflammation
in the liver (Zeisel et al., 1983). Patientswho receive total parenteral nu-
trition can develop steatosis related to choline deficiency and this is
prevented by choline replacement (Buchman et al., 2001). Furthermore
the gut microbiome has been shown to change in choline-deficient pa-
tients associated with changes in liver fat (Spencer et al., 2011).

Gut dysbiosis refers to disruption of the normal gut microbiota it is
present in obesity and NAFLD. A high prevalence of small intestinal bac-
terial overgrowth (SIBO) has been found in obese patients undergoing
bariatric surgery. 137 patients underwent a hydrogen breath test and
136 had an intraoperative liver biopsy (Sabaté et al., 2008). SIBO was
shown to be an independent risk factor for the presence of severe
steatosis with an odds ratio of 27.5. Furthermore dysbiosis is related
to NAFLD. A study comparing 53 NAFLD patients with 32 healthy con-
trols showed a significant difference in the genus composition between
the two groups (Jiang et al., 2015).

Furthermore, there was an increase in the size of the tight junctions
in the duodenal mucosa and a decrease in the amount of occludin in the
mucosal cells. Occludin is the structural backbone of the tight junctions.
In addition there is an increase in toll-like receptor signaling linked to
SIBO in patients with NAFLD (Kapil et al., 2016). Recently, it has been
shown that there is a link between gut dysbiosis, the severity of
NAFLD and a shift in the metabolic function of the gut microbiome
(Boursier et al., 2016). Therewas a decrease in Prevotella and an increase
in Bacteroides when comparing both patients with NASH and without
NASH and also when comparing patients with NASH andminor fibrosis
to those with more advanced fibrosis. In addition, when using a tech-
nique termed PICRUST for examining the metagenomic profile, it was
found that there was an increase in bacteria employing the KEGG path-
way involving metabolism of carbohydrates, lipids and amino acids.

It seems that the microbiomemay contribute to liver disease in sev-
eral ways as illustrated in the Fig. 5.

It may be possible to modulate the microbiome in order to treat
NAFLD. One of the central features of themetabolic syndrome is obesity
and weight loss is an important component of any treatment regimen
for NAFLD. Weight loss has been shown to produce changes in the
fecal microbiome, both in terms of metabolic products and bacterial
communities (Patrone et al., 2016). In a small study, transfer of intesti-
nalmicrobiota froma lean donorwas found6weeks later to increase in-
sulin sensitivity in treatment-naive patients with the metabolic
syndrome (Vrieze et al., 2012a, 2012b). Unfortunately lifestyle changes
alone are not sufficient in most patients and further intervention is re-
quired. Administration of prebiotics to patients with NAFLD has been
examined. A meta-analysis, although showing a decrease in serum
transaminases, did not show a significant change in either the level of
TNF-alpha or the HOMA index (Ma et al., 2013). It is difficult to draw
conclusions about the effects of probiotics since animalmodels and bac-
terial strains are different, the gut microbiota will always outnumber
the probiotics that can be administered and there is a variability of the
human microbiome, diet and genetics.

Probiotics are non-digestible plant-derived carbohydrates that act as
a fermentation substrate within the colon. They can stimulate the pref-
erential growth and activity of a limited number of microbial species
that confer health benefits on the host. A meta-analysis of 26 random-
ized controlled trials of prebiotics in humans showed a beneficial effect
on post-prandial glucose and insulin concentrations (Kellow et al.,
2014). This may have a beneficial effect on NAFLD but remains to be
determined.

Together withmy colleagues we are investigating the effects of fecal
transplantation from a thin donor on 10 obese patients and 10 control
patients undergoing a screening colonoscopy. The results are eagerly
awaited. However, it has recently been estimated that in order to have
the power to detect a beneficial effect on obesity hundreds of patients
will need to be included in the studies going forward (Falcony et al.,
2016).
In summary, there is an effect of the fecal microbiome on both the
development and progression of NAFLD. Studies on the therapeutic im-
plications of this finding are just beginning.

5. The role of dietary fat in the gut-liver axis in alcoholic liver disease

Irina A. Kirpich, M.P.H., Ph.D
Diet and crosstalk between the gut and the liver are important deter-

minants of alcoholic liver disease (ALD) (Kirpich et al., 2016a, 2016b).
Numerous studies, have shown that dietary unsaturated fat (specifically
omega 6 lipids) exacerbates alcohol-mediated intestinal permeability,
liver steatosis, inflammation, and injury (Nanji and French, 1989;
Kirpich et al., 2012, 2013; Chen et al., 2015; Zhong et al., 2013; Ronis
et al., 2004). These pathological effects were prevented/blunted by die-
tary saturated fat, suggesting a significant contribution of specific die-
tary lipids in ALD development and progression. As shown in a
number of recent clinical (Gabbard et al., 2016; Bode et al., 1993,
Morencos et al., 1995, Tuomisto et al., 2014) and preclinical studies
(Bull-Otterson et al., 2013, Mutlu et al., 2009, Yan et al., 2011), alcohol
intake and alcohol-induced liver injury are associated with qualitative
and quantitative alterations of gut microbiota. We have recently dem-
onstrated that dietary saturated fat (SF), rich inmedium chain triglycer-
ides [MCT] and beef tallow and unsaturated fat (USF, rich in corn oil)
differentiallymodulate gutmicrobiome, intestinal barrier and liver inju-
ry in a mouse model of ALD (Kirpich et al., 2016a, 2016b). Thus, com-
pared to SF + EtOH, USF + EtOH administration produced hepatic
steatosis, inflammation, and injury. In parallel with liver injury, signifi-
cantly elevated serum LPS levels, intestinal inflammation and increased
gut permeability with intestinal tight junction and mucus layer alter-
ations were observed in mice fed USF + EtOH but not SF + EtOH.
Major alterations in gut microbiota, including a prominent reduction
in Bacteroidetes, and an increase in Proteobacteria and Actinobacteria,
were seen in USF + EtOH but not in SF + EtOH fed animals, suggesting
that the types of dietary fat play a critical role in ethanol-mediated
changes of the composition of the gut microbiota. The increase in
Proteobacteria phylum provides a possible link between the alterations
of the gutmicrobiota and hepatic inflammation via endotoxin, a compo-
nent of the Gram negative bacteria outer membrane. It has been shown
that unlike dietary SF, USF feeding promoted ethanol-mediated reduc-
tion of commensal bacteria (e.g., Lactobacillus species) that produce
beneficial factors for maintaining barrier function in intestinal epithelial
cells. Characterization of both microbiota composition and function is
an important approach to investigate host–microbial interaction.

In comparison to SF + EtOH, USF + EtOH caused major fecal
metabolomic changes, including significant reduction in numerous
long- (hexadecanoic and heptadecanoic), medium- (hexanoic and
octanoic), and short- (butanoic) free fatty acids. A decline in certain
fecal amino acids (e.g. serine and glycine) was also observed in
USF + EtOH fed animals. Remarkably, the levels of octanoic acid,
which possesses some antimicrobial properties, were dramatically

Image of Fig. 6
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reduced (~50 fold) in mice fed USF+ EtOH compared to SF+ EtOH fed
animals. The relative deficiency of octanoic acid may contribute to the
expansion of certain types of bacteria and overall changes in the gutmi-
crobial population caused by USF + EtOH. The protective effects of SF
diet on ethanol-mediated changes of the gut microbiota might be also
attributed to octanoic acid, as it was the major fatty acid in SF diet. Fur-
ther studies will be needed to test these hypotheses. Given that short
free fatty acids play an important role in the intestinal and host health,
the decrease in fecal butanoic acid may contribute to the intestinal in-
flammation and gut barrier disruption observed in USF + EtOH fed
mice. In addition, butyrate possesses anti-inflammatory properties
(Inan et al., 2000), and serves as a potent histone deacetylase inhibitor
(Davie, 2009). In experimental ALD, butyrate supplementation
protected against alcohol-mediated intestinal tight junction disruption
and liver inflammation (Cresci et al., 2014).

In summary, there is an increasing body of evidence demonstrating
that different types of dietary fat differentially modulate susceptibility
to EtOH-mediated alterations in the gut and the liver (Fig. 6), and sug-
gest that the ethanol-mediated liver injury and gut dysbiosis can be
therapeutically targeted by dietary manipulations (e.g., modulation of
dietary lipids) that may offer a novel prevention/therapeutic approach
in the ALD management.
6. Autophagy in alcohol-induced liver injury

Paul G. Thomes Ph.D., Laura W. Schrum Ph.D., Terrence M.
Donohue, Jr. Ph.D.

The hallmarks of liver pathology that occur after years of heavy
drinking include accumulation of lipid droplets, damaged proteins and
defective organelles, which cause cellular toxicity, and ultimately, hepa-
tocyte death (Donohue, 2009; Ji, 2015; Dolganiuc et al., 2012). Accumu-
lation of toxic molecules in the liver can be partially attributed to
dysfunction of intracellular degradation pathways, which tightly regu-
late turnover rates of proteins and clear the cell of obsolete macromol-
ecules (Donohue, 2009). The two most important intracellular protein
degrading systems in mammalian cells that maintain cellular homeo-
stasis are the ubiquitin-proteasome system and lysosome-dependent
autophagy (Donohue and Thomes, 2014).

Macro-autophagy (hereafter, called autophagy) is a process of intra-
cellular degradation of a cell's own contents (i.e., “self-eating”). Autoph-
agy degrades macromolecules (proteins, nucleic acids, carbohydrates,
triglycerides) and dysfunctional organelles to generate pre-cursors for
energy production, anabolic processes and to eliminate potentially
toxic cellular waste (Moreau et al., 2010; Donohue, 2009; Donohue
and Thomes, 2014). Cells activate autophagy in response to nutrient
deprivation, oxidant stress and hypoxia (Donohue, 2009). Conversely,
autophagy is suppressed by growth factors, nutrients and by nutrient
sensing pathways (Neufeld, 2012). Autophagy begins within the cyto-
plasm, with the formation of a doublemembrane structure that seques-
ters substrates destined for degradation in a vesicle called
autophagosome/autophagic vacuole (AV). The AV is trafficked to and
fuseswith a lysosomewhere its contents are degraded by lysosomal hy-
drolases. This process is regulated by the coordinated actions of autoph-
agy-related gene products (Atgs) (Itakura and Mizushima, 2010). For
more details of the autophagy pathway, please refer to the following re-
view articles (Dolganiuc et al., 2012; Donohue and Thomes, 2014).

Early work in the lab of Dr. Donohue revealed that chronic ethanol
exposure to rodents impairs hepatic lysosomal function (Donohue et
al., 1989, 1994; Kharbanda et al., 1995), indicating that alcohol disrupts
autophagy, as this pathway is dependent on lysosomes formacromolec-
ular degradation (Donohue, 2009). Since disruption of autophagy is as-
sociated with a variety of liver diseases (Czaja et al., 2013) and such
disruption of autophagy by alcohol could be the possiblemechanismbe-
hind accumulation of toxic substances in the liver leading to alcoholic
liver injury, we investigated how ethanol oxidation regulates autophagy
in ethanol metabolizing hepatoma cells in vitro and in the livers of
chronic ethanol-fed mice in vivo.

Wemeasured autophagy by quantifying the AVmarker protein LC3-
II by immunohistochemistry and Western blot in ethanol non-metabo-
lizingHepG2 cells and in recombinant VL-17A cells that metabolize eth-
anol through stably expressed alcohol dehydrogenase (ADH1) and
cytochrome P4502E1 (CY2E1), after 50 mM ethanol exposure for 24 h
(Thomes et al., 2013). Immunohistochemistry and Western blot analy-
ses confirmed that ethanol exposure induced AVs only in VL-17A cells,
which metabolized ethanol, as judged by acetaldehyde (Ach) produc-
tion in the culturemedia (Thomes et al., 2013). Further, whenwe co-in-
cubated VL-17A cells with ethanol and 4-methylpyrazole to block
ethanolmetabolism, VL-17A cells exhibited noAV induction, suggesting
that ethanol oxidation is necessary for enhanced AV formation (Thomes
et al., 2013). To further understand the temporal regulation of AVs by
ethanol, we performed LC3-II flux measurements in the presence and
absence of lysosomal inhibitor bafilomycin, to determine the rate of
AV synthesis and their degradation. Bafilomycin blocks lysosomal deg-
radation of substrates, including AVs by increasing lysosomal pH.
Thus, elevated LC3-II levels in VL-17A cells co-incubated with ethanol
and bafilomycin compared with cells exposed to ethanol or bafilomycin
alone indicated that ethanol exposure enhanced the synthesis of AVs
(Thomes et al., 2013). When wemeasured the levels of P62, an adaptor
proteinwhose levels decrease during activation of autophagy, we found
that ethanol exposure simultaneously increased P62protein, suggesting
that AVs accumulated in VL-17A cells due to enhanced synthesis and de-
creased degradation (Thomes et al., 2013). To validatewhether ADH ca-
talysis, which produces acetaldehyde (Ach) and CYP2E1 catalysis which
predominantly generates ROS, have different effects on AV formation,
we tested ethanol effects on LC3-II in VA-13 and E-47 cells, which
metabolize ethanol through stably expressed ADH1 and CYP2E1,
respectively. Interestingly, only VA-13 cells exhibited enhanced
AV formation after ethanol exposure (Thomes et al., 2013). Further
investigations revealed that HepG2 and E-47 cells did not produce Ach
but VA-13 and VL-17A cells each produced Ach after ethanol exposure,
indicating that the primary ethanol metabolite Ach is likely responsible
for ethanol-induced disruption of autophagy (Thomes et al., 2013). This
was supported by other findings that it is not exposure of acetate, a
product of Ach metabolism, but rather exposure to Ach that induced
LC3-II levels in VA-13 and VL-17A cells (Thomes et al., 2013). We con-
firmed the effects of Ach on autophagy when direct exposure of Ach
(300 μM) for 24 h enhanced LC3-II protein in ethanol non-metabolizing
HepG2 cells (Thomes et al., 2013). These findings suggest that the pri-
mary ethanol metabolite Ach, which is deemed responsible for much
of the pathology associated with ethanol, disrupted autophagy in etha-
nol metabolizing HepG2 cells.

We extended our investigations on autophagy in vivo to livers
of GFP-LC3 mice (C57/BL6) pair-fed the Lieber-DeCarli control or
ethanol diet for six to eight weeks. GFP-LC3 mice are transgenic
for the fusion protein green fluorescent protein-microtubule asso-
ciated protein light chain 3 (GFP-LC3), thus AVs are readily visual-
ized as fluorescent green puncta (dots) under the fluorescent
microscope. Our microscopic analyses revealed that hepatocytes
isolated from ethanol-fed mice exhibited higher levels of AVs
than those from pair-fed control mice (Thomes et al., 2015),
supporting our in vitro findings that ethanol metabolism induces
AV formation. Ethanol feeding not only increased AV numbers but
they also increased their average volume, suggesting that
undegraded AV cargo was accumulating in these vesicles
(Thomes et al., 2015). After we stained the lysosomes (Lys) and
co-localized AVs with Lys, as an index of AV-Lys fusion, a crucial
step in the degradation phase of autophagy, we found that hepato-
cytes from ethanol-fed mice exhibited fewer lysosomes and a
lower frequency of AV-Lys co-localization compared with hepato-
cytes from pair-fed control mice (Thomes et al., 2015). We report-
ed similar findings in ethanol exposed VL-17A cells (Thomes et al.,
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2013). These findings reveal that ethanol caused defects in AV-Lys
fusion. We verified these findings using immunohistochemical
staining in crude liver homogenates and in isolated lysosomal frac-
tions of livers. Ethanol-fed mice exhibited enhanced LC3-II levels
compared with mice fed the control diet (Thomes et al., 2015). In
these same fractions we simultaneously detected higher P62 levels
in livers of ethanol fed mice than in pair-fed control mice (Thomes
et al., 2015), supporting our in vitro findings that ethanol exposure
enhanced AV synthesis, but it simultaneously decreased AV degra-
dation. When we quantified free GFP derived from GFP-LC3 hydro-
lysis as another index of autophagy flux, we detected lower levels
of free GFP in ethanol-fed mice livers than in liver homogenates
of pair-fed control mice (Thomes et al., 2015), confirming that
chronic ethanol exposure slowed down hepatic autophagy in
vivo. Collectively, our in vitro and in vivo findings suggest that
ADH-catalysis of ethanol oxidation produces acetaldehyde that in-
fluences the microtubule network and disturbs AV trafficking to ly-
sosomes, thereby disrupting hepatic autophagy.

Acute or binge ethanol exposure induces (accelerates) autophagy
(Ding et al., 2010; Thomes et al., 2015), as ethanol-induced oxidant
stress suppresses mechanistic target of rapamycin (mTOR) (Ding et
al., 2010; Thomes et al., 2013), a major negative regulator of autophagy
(Donohue and Thomes, 2014). Interestingly, more robust non-chronic
ethanol exposure, such as the one described by Wu et al. (Wu et al.,
2012) (2 dose daily for 4 days), inhibits autophagy. This indicates that
a condition (ethanol regimen) generating overwhelming levels of oxi-
dant stress within 4 days can block the hepatic autophagy machinery
to slow down macromolecular catabolism. Similarly, chronic ethanol
creates a continuous condition of oxidant stress to inhibit autophagy,
which depends on the levels of oxidants produced during the ethanol
exposure regimen (Thomes et al., 2015). Much of the early liver pathol-
ogy (e.g., steatosis) associated with alcohol abuse can be alleviated by
cessation of drinking which could eventually restore autophagy to nor-
mal. However, we propose that autophagy is diminished in problem
drinkers, thereby contributing to the hallmark features of alcoholic
liver disease. Since ethanol exposure disrupts hepatic autophagy, accel-
eration of autophagy with rapamycin and carbamezipine alleviates
chronic ethanol-induced fatty liver and injury in a mouse model of
chronic ethanol (Lin et al., 2013). Moreover, a reduction in autophagy
has been linked to a variety of liver diseases (Czaja et al., 2013). Thus,
there is general agreement that autophagy is a cytoprotective pathway
in the liver (Moreau et al., 2010; Czaja et al., 2013). However, it was re-
ported that activation of autophagy in hepatic stellate cells (HSCs) in-
creases fibrogenesis (Hernandez-Gea et al., 2012), and conversely, its
inhibition reduces liver fibrosis induced by CCl4 (Hernandez-Gea et al.,
2012). These findings have led some to suggest that blocking HSC au-
tophagy is a viable therapy for liver fibrosis.We demonstrated that alco-
hol exposure disrupts hepatocyte autophagy (Thomes et al., 2015).
Compared with untreated HSCs, 50 mM ethanol or 100 μM Ach expo-
sure for 24 h elevated LC3-II levels in primary rat HSCs (unpublished
data). Rat HSCs expressADH1,which suggests that HSCs oxidize ethanol
to acetaldehyde leading to higher LC3-II levels. Currently, we are inves-
tigatingwhether ethanol and/or Ach-induced LC3-II represents autoph-
agy acceleration and whether they promote the HSC fibrogenic
phenotype by modulating autophagy activity in HSCs. However, we
found that exposure of HSCs to the autophagy activator rapamycin or
the autophagy inhibitor wortmannin both decreased α-SMA produc-
tion and cell proliferation in primary ratHSCs (unpublished data). Inter-
estingly, TGF-β-induced fibrogenic phenotype was associated with
enhanced cell proliferation but decreased autophagy flux (unpublished
data). These latter findings suggest that autophagy per se may not con-
tribute to fibrogenesis. Currently, we are investigating how autophagy
activators and autophagy inhibitors both attenuate liver fibrosis. Modu-
lating autophagy is a sensiblemaneuver to treat liver diseases (Jiang and
Mizushima, 2014; Czaja et al., 2013). However, a clear understanding of
the functional role of autophagy in advanced liver diseases like fibrosis
is essential for targeting autophagy for treatment of liver diseases.
Thus, in addition to comprehensive animalmodel studies, carefully con-
ducted studies are warranted, using surgically- or biopsy-derived liver
tissue from human donors to determine the status of autophagy in alco-
holic patients. These analyses could lead to practical strategies that use
autophagy-modulating agents for the treatment of alcoholic liver
disease.

7. Creatinine supplementation: does it prevent alcohol-induced liver
injury?

Kusum K. Kharbanda Ph.D.
Previous studies from our laboratory have shown that it is the

alcohol-induced reduction in the hepatocellular S-adenosylmethionine
(SAM):S-adenosylhomocysteine (SAH) ratio (a.k.a. methylation
potential) that impairs the activities of many SAM-dependent methyl-
transferases (Kharbanda, 2009, 2013). This leads to steatosis and pro-
teasome inhibition (Ganesan et al., 2015; Kharbanda et al., 2007;
Kharbanda et al., 2013, Kharbanda et al. 2014; Osna et al., 2010).
Guanidinoacetate methyltransferase (GAMT) catalyzes the final reac-
tion in the creatine biosynthetic process. As liver is a major site for cre-
atine synthesis (da Silva et al., 2009) and since GAMT-mediated
catalysis consumes as much as 40% of all the SAM-derived methyl
groups, creatine production places a substantial methylation burden
on the liver (Mudd et al., 2007). We hypothesized that providing crea-
tine exogenously could potentially spare SAM, preserve hepatocellular
SAM:SAH ratio and thereby prevent the loss of methylation potential
and thus, the development of alcoholic steatosis. Male Wistar rats
were pair-fed the Lieber DeCarli control or ethanol diet (Lieber and
DeCarli, 1989) with or without 1% creatine supplementation for 4–
5 weeks of feeding (Murali et al., 2016). The blood, heart and livers
were removed and processed for determining histological and bio-
chemical end-points (Kharbanda et al., 2014). Creatine supplementa-
tion neither prevented alcoholic steatosis nor attenuated the alcohol-
induced proteasome activity. The hepatocellular SAM:SAH ratio seen
in the ethanol-fed rats was also not normalized, when these rats were
fed the creatine supplemented ethanol diet. However, a N10-fold in-
creased level of creatine was observed in the liver, serum and hearts
of rats fed the creatine-diets. Dietary creatine supplementation did not
prevent alcoholic liver injury (Murali et al., 2016) despite preventing
choline-deficient or high-fat diet-induced hepatic steatosis (Deminice
et al., 2011, 2015). Betaine, that maintains cellular SAM:SAH remains
our best option for treating alcoholic steatosis (Kharbanda, 2009,
2013; Thomes et al., 2015).

8. Acetaldehyde a neglected human carcinogen

Mikko Salaspuro Ph.D.
A single point mutation in aldehyde dehydrogenase (ALDH)2-gene

provides conclusive evidence for a causal relationship between acetal-
dehyde and upper gastro-intestinal tract cancer (Väkeväinen et al.,
2000; Maejima et al., 2015). This mutation results in the deficient activ-
ity of the mitochondrial ALDH2. When drinking alcohol, ALDH2-defi-
cients are exposed via saliva to 2–3 times and via gastric juice to 5–6
times higher local acetaldehyde concentrations than individuals with
the active ALDH2-enzyme. Parallel to the increased local acetaldehyde
exposure, the risk of ALDH2-deficient alcohol drinkers for oral, pharyn-
geal, esophageal and gastric cancer is many fold compared to alcohol
drinking ALDH2-actives (Yokoyama et al., 1998; Tsai et al., 2014;
Matsuo et al., 2013). Based on the strong epidemiological and biochem-
ical evidence, the International Agency for Research on Cancer (IARC/
WHO) has reclassified acetaldehyde associated with the consumption
of alcoholic beverages as a group 1 human carcinogen (IARC, 2012).
An equivalent human cancer model that is based on the proven gene-
biochemical and -environmental interactions is not available for any
other of the 118 group 1 human carcinogens. A key factor in
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acetaldehyde associated carcinogenesis is its local accumulation after al-
cohol drinking and tobacco smoking in the upper digestive tract. Nor-
mal saliva does not contain measurable levels of acetaldehyde.
However, a dose of alcohol results in mutagenic concentrations of acet-
aldehyde in the saliva, and the enhanced local acetaldehyde exposure
continues for as long as ethanol stays in the human body (Homann et
al., 1997). Acetaldehyde accumulates in the upper digestive tract due
to the local oxidation of ethanol to acetaldehyde by the normal upper
digestive tractmicrobialflora, parotid glands andmucosal cells. Howev-
er, unlike the liver these organisms and organs are not sufficiently capa-
ble for the detoxification of acetaldehyde (Salaspuro, 2003).

Acetaldehyde has a faint apple like aroma. It is soluble to water and
lipids and consequently it passes easily the cell membranes. It is carci-
nogenic to experimental animals. Via its very reactive aldehyde group
acetaldehyde has been shown to form mutagenic DNA adducts in the
oral mucosa of humans already after a moderate dose of alcohol (Seitz
and Stickel, 2010).

Acetaldehyde presumably is the most common human carcinogen.
In addition to acetaldehyde formed from ethanol, a high concentration
of ‘free’ acetaldehyde is present in many alcoholic beverages as well as
in some foodstuffs produced by fermentation since microbes are able
to effectively produce acetaldehyde from ethanol already at very low
ethanol concentrations (0.2–1‰) (Balbo et al., 2012; Lachenmeier et
al., 2009; Lachenmeier et al., 2010).

Acetaldehyde is widely used as an aroma agent and food additive. It
is the most abundant carcinogen of tobacco smoke that dissolves in the
saliva during smoking and is by that means distributed to the mucosal
surfaces of the whole upper digestive tract (Haussman, 2012;
Salaspuro and Salaspuro, 2004). The IARC/WHO has classified acetalde-
hyde as a group 1 human carcinogen since 2009 (Secretan et al., 2009).
The Scientific Committee on Consumer Safety nominated by the Euro-
pean Commission concluded unanimously in 2012 that the maximum
concentration for acetaldehyde in cosmetic products is 5 mg/l and that
acetaldehyde should not be intentionally used inmouth-washing prod-
ucts (SCCS, 2012). Some alcoholic beverages exceed this concentration
over a hundred times and some food over three times. On the contrary,
an international scientific expert committee administered jointly by the
Food and Agriculture Organization of the United Nations andWHO still
considers acetaldehyde to be a Generally Regarded as Safe product. Ac-
cordingly there are no restrictions with regard to the use of acetalde-
hyde as an aroma agent and food additive (JECFA.1998). By limiting
alcohol consumption and quitting from tobacco smoking, avoiding bev-
erages and food containing even low levels of ethanol, and maintaining
a good oral hygiene people can decrease microbial acetaldehyde pro-
duction from ethanol by 50–100% (Homann et al., 2001).

Atrophic gastritis is themajor risk factor for gastric cancer. It is char-
acterized by a hypochlorhydric or achlorhydric stomach, which is colo-
nized by oral microbes (Salaspuro, 2011). These microbes produce
effectively acetaldehyde fromany ethanol present in the saliva or gastric
juice after consumption of alcoholic beverages or food. Special slowly L-
cysteine releasing capsules and lozenges eliminate from 60 to 90% of
carcinogenic acetaldehyde from saliva and gastric juice after alcohol ad-
ministration and tobacco smoking (Salaspuro et al., 2006; Linderborg et
al., 2011). These formulations provide a novel approach for the minimi-
zation of local acetaldehyde exposure in the upper digestive tract.

9. Alcohol and oral health

AndreeaVoinea-GriffinDDS, Ph.D. andAndrei BaraschDMD,MDSc.
Despite a wealth of evidence on the negative impact of alcoholism

on digestive tract health, little is known on the link between alcohol
abuse and oral health. Numerous studies showed that the relationship
between general and oral health is stronger than once believed and
sometimes bi-directional (Nagpal et al., 2015). For example, oral mor-
bidities have been associated with low birth weight (Soroye et al.,
2015), cardiovascular disease (Abou-Raya et al., 2002), and lung cancer
risk (Zeng et al., 2016). Diabetesmellitus and periodontal disease have a
bi-directional relationship (Kapellas et al., 2016; Mammen et al., 2016).

Drug-induced salivary and mucosal diseases were long described in
the dental literature. Biphosponate-induced osteonecrosis of the jaw
has been well documented and changed dental treatment recommen-
dations for those undergoing these treatments (Barasch et al., 2011;
Barasch et al., 2003; Vena et al., 2013). de Boissieu and his colleagues
(2016) documented bisphosphonate-related osteonecrosis of the jaw
in the French national pharmacovigilance database MedDRA among all
data from 1985 to 2014 outcome, seriousness in 640 individuals (70%
women). Known associated factors for bisphosphonate-related
osteonecrosis of the jaw such as dento-alveolar surgery, glucocorticoids,
chemotherapy, anti-angiogenics, denosumab, alcohol were identified
for 70% of the patients.

Substance abuse has a devastating effect on dental tissues
(Shekarchizadeh et al., 2013). Given the relationship between general
and oral health, it is possible that alcohol abuse has a larger impact on
the health of oral cavity than shown to date.

Caries and periodontitis are the most prevalent oral diseases and
share several etiologic factors. Of those, poor oral hygiene, poor diet, de-
creased salivary flow, and decreased immune response are commonly
found in alcoholic patients. Several studies reported on the increased
prevalence of periodontal disease (Tezal et al., 2001), coronal caries
(Friedlander et al., 2003) and root caries (Hayes et al., 2016) in alcoholic
patients. These morbidities are most likely caused by the poor plaque
control commonly found when personal hygiene is neglected and the
salivary flow is diminished. Neglect and dry mouth are common in pa-
tients with high level of alcohol consumption. Research also empha-
sized the role of age in increasing oral health risk in alcoholic patients
(Friedlander and Norman, 2006).

Alcohol abuse has also been associated with erosive tooth wear
on the palatal surfaces of the upper anterior teeth (Teixeira et al.,
2016). The prevalence of tooth erosions was reported to be as
high as 50% and directly associated with the duration of chronic al-
coholism. Oral soft tissue lesions are common in alcohol abuse pa-
tients, most likely due to the nutritional deficiencies characteristic
in this population group. Mucosal ulcers, glossitis, and angular
cheilitis are just a few of the orofacial presentations found in pa-
tients who abuse alcohol.

Among all oral morbidities, oral cancer has beenmost clearly associ-
ated to alcoholism. Alcohol abuse has been linked to 37% and 17% of oral
and pharyngeal cancers in UK men and women, respectively (Parkin,
2012). Alcohol use after an oral cancer diagnosis increases the risk of a
second primary tumor by up to 50% (Miller et al., 2006). Concurrent al-
coholism and tobacco use results in an increased risk for oral cancer by a
factor as high as 35 (Parkin, 2012).

This is a call for research, education, and care coordination with the
goal of improving care for the alcoholic patients. Little is known on the
mechanisms of the association between alcohol and oral morbidities
or whether a causal relationship actually exists. Health care profes-
sionals should engage in additional research, be aware of the current
knowledge and its limitations, and participate in multidisciplinary
teams to better care for alcoholic patients. Dental professionals should
be included in these teams, since oral health in alcoholic patients is com-
monly overlooked. Dental professionals can screen and refer patients for
substance abuse interventions, promote oral health, provide preventive
dental care, and improve alcoholic patients' ability for food intake. Med-
ical professionals in turn must be suspicious of any oral mucosal lesions
and refer for oral cancer screening as soon as a lesion is detected. Know-
ing the critical role of nutrition and the emergency care seeking pattern
in this patient population, referral for dental care is an important step in
maintaining not only oral but also general health. Health care profes-
sionals should integrate care across medical and dental disciplines if
better outcomes are to be achieved.Moreover, the relationship between
alcohol abuse and oral health is strong andmay warrant a concerted ef-
fort of the research community.
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10. Alcohol and colorectal cancer

Helmut K. Seitz M.D.
The International Agency for Research on Cancer declared alcohol as

a risk factor for colorectal cancer (Baan et al., 2007a, 2007b), since epi-
demiological case control- as well as prospective cohort and correlation
studies have demonstrated significant correlation between alcohol in-
take and colorectal cancer risk with a dose-response relationship
(Seitz and Homann, 2012). In most of the animal experiments in
which a carcinogenwas given to induce colorectal cancer the additional
administration of alcohol increased tumor yield. Furthermore the ad-
ministration of alcohol as 20% in drinkingwater for tenweeks increased
intestinal tumors in theC57/B6ABC-minmouse (Roy et al., 2002). In ad-
dition, when a local carcinogen which does not need metabolic activa-
tion was applied to the colon and colorectal mucosa in animals, an
acceleration of carcinogenesis was observed (Seitz et al., 1990). Alcohol
is delivered from the blood to the colon and reaches the same levels in
the colon content as in blood. Alcohol is metabolized in the colonmuco-
sa by alcohol dehydrogenase (ADH) and by bacterial enzymes in both
cases to acetaldehyde. The highest levels of acetaldehyde occur in the
rectum since bacteria have a high capacity to oxidize alcohol to acetal-
dehyde (Seitz et al., 1990). Acetaldehyde concentrations in the
colorectum correlate significantly with cell cycle behavior. Acetalde-
hyde leads to a hyperproliferation of the mucosa and to an extension
of the proliferative compartment of the crypt towards the lumen
which resembles an early risk for cancer. Similar observations as in
rats have also been observed in men (Simanowski et al., 2001). Since
the ADH1C1 allele codes for an enzyme which has a 2.5 times faster
metabolic rate to produce acetaldehyde, it was not surprising that an al-
coholic patient who consumes N30 g alcohol per day with the genotype
ADH1C1,2 has a significantly increased risk for colorectal cancer
(Homann et al., 2009). In addition, it was observed that crypt-cell be-
haviorwas also affected by vitamin E (Vincon et al., 2003). Since vitamin
E inhibits alcohol mediated hyperproliferation it is suggested that oxi-
dative stressmay play a role. In the alcoholicmost of the oxidative stress
comes from the induction of cytochromeP4502E1 (CYP2E1)whichme-
tabolizes ethanol. As a side reaction reactive oxygen species (ROS) occur
which may lead to lipid peroxidation and finally generation of highly
carcinogenic exocyclic etheno-DNA adducts (Linhart et al., 2014). This
has been shown in the liver and the upper gastrointestinal tract.

In a recent study with 42 alcoholics and 12 control patients we de-
termined CYP2E1 as well as etheno DNA-adducts in the colon mucosa
Fig. 7. Lipid peroxidation —
by immunochemistry. There was a great variability in the presence of
both CYP2E1 and etheno DNA adducts. However, no significant differ-
ence between alcohol and control patients was found, while a signifi-
cant correlation between CYP2E1 and εdA was observed. Since alcohol
consumption leads to apoptosis at least in isolated intestinal cells (Wu
and Cederbaum, 2004) we wonder whether this is also the case in
humans. Therefore, we determine apoptosis and anti-apoptotic protein
in our patients. While inflammation and apoptosis was absent in all bi-
opsies, the anti-apoptotic proteinMcl-1was found to be significantly in-
creased. Mcl-1 has a short half life and has been identified as the key-
protein responsible for rapidly changing environmental cue conditions.
Mcl-1 has functions beyond cell dysregulation; a regular contribution of
Mcl-1 to invasiveness, cell cycle andmitochondrial respiration has been
described (Koehler et al., 2015). The survival benefits in colorectal mu-
cosa gained through up-regulated Mcl-1 might end up in a cell with ac-
cumulated DNA-damage and mutation and may facilitate
carcinogenesis.

11. Biomarkers in nonalcoholic fatty liver disease

Manuela G. Neuman M.Sc., Ph.D., Lawrence B M.Sc., M.D., Cohen,
Mihai Opris M.D., Marcus Cruz B.Sc.

Nonalcoholic fatty liver disease (NAFLD) refers to the lipido-
hepatocyto-toxicity when no other causes for fat accumulation in hepa-
tocytes is declared or known such as heavy alcohol consumption
(Zimmerman, 1999), drug-induced (Neuman et al., 2015a) or herbal-in-
duced liver injury (Neuman et al., 2015b, 2015d). NAFLD is increasingly
prevalent affecting children, adolescents and adults, leading to develop-
ment of atherosclerosis and the metabolic syndrome (MS), both of
which significantly increase the risk of cardiovascular disease (CVD)
and non-alcoholic steatohepatitis (NASH)withmorbidity andmortality
(Bellentani and Marino, 2009; Argo and Caldwell, 2009; Neuman et al.,
2014a). NAFLD is characterized by insulin resistance frequently associ-
ated with hepatic fat accumulation. In NAFL, hepatic steatosis is present
without evidence of inflammation, whereas in NASH, hepatic steatosis
is leading to severe steatohepatitis with centrilobular necro-inflamma-
tion. This inflammation histologically is indistinguishable from alcoholic
steatohepatitis. NASH inflammation shows hepatocyte injury (balloon-
ing) and Mallory-Denk bodies with or without fibrosis. NASH is most
common in middle-aged persons but is found in all age groups. NASH
typically occurs in persons who are overweight (Neuschwander-Tetri,
2010) or diabetic (Fagot-Campagna et al., 2000), but it has recently
reactive oxygen species

Image of Fig. 7


Fig. 8. Immunohistochemical staining of a precursor caspase is clearly represented in a
biopsy of a patient with NASH. Hepatocytes presenting macro-vesicular steatosis can be
seen. Very few hepatocytes present microvesicular steatosis. Apoptotic bodies can be
observed (black spots).
Biomarkers for alcohol ingestion have been recently reviewed by our group (Nanau and
Neuman, 2015). Alcohol ingestion can be measured using a breath test. Because alcohol
is rapidly eliminated from the circulation, the time for detection by this analysis is in the
range of hours. Alcohol consumption can alternatively be detected by direct
measurement of ethanol concentration in blood or urine. Several markers have been
proposed to extend the interval and sensitivities of detection, including ethyl
glucuronide and ethyl sulfate in urine, phosphatidylethanol in blood, and ethyl
glucuronide and fatty acid ethyl esters in hair, among others. Moreover, there is a need
to correlate the indirect biomarker carbohydrate deficient transferrin, which reflects
longer lasting consumption of higher amounts of alcohol, with serum γ-glutamyl
transpeptidase, another long term indirect biomarker that is routinely used and
standardized in laboratory medicine. Therapeutic interventions may reduce steatosis
and the development of inflammation by reducing substrate supply for lipogenesis from
triglycerides, or from excessive lipolysis and free fatty acid (FFA) flux to the liver from
adipose tissue. In addition the target of therapeutic intervention can inactivate the
inflammation cascade generated by mitochondrial dysfunction, activation of Kupffer
cells, or increase release of pro-inflammatory cytokines.
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been shown to occur in subjects with normal body weight and normal
glucose tolerance (Neuman et al., 2014b). Familial tendency to NASH-
induced hepatocellular carcinoma (HCC) has been described by our
group (Neuman et al., 2005). The increased prevalence of cirrhosis
and HCC in diabetes and obesity has lead to consider NAFLD as the
main cause of a raising incidence of liver complication and liver related
death in patients with these clinical conditions.

Both excessive BMI and visceral obesity are recognized risk factors
for NAFLD. In patients with severe obesity undergoing bariatric surgery,
the prevalence of NAFLD can exceed 90% and up to 5% of patients may
have unsuspected cirrhosis (Boza et al., 2005; Haentjens et al., 2009;
Machado et al., 2006; Colicchio et al., 2005; Beymer et al., 2003). There
is a very high prevalence of NAFLD in individuals with type 2 diabetes
mellitus (T2DM) (Marchesini et al., 2001; Vernon et al., 2011). More-
over, Weikert and Pfeiffer (2006) show glucose metabolism in the
liver signals for fatty infiltration in the liver. Troiano and Flegel (1998)
make the link between obesity and diabetes in children. An ultrasono-
graphic study of patients with T2DM showed a 69% prevalence of
NAFLD (Leite et al., 2009). In another study, 127 of 204 diabetic patients
displayed fatty infiltration on ultrasound, and 87% of the patients with
histological confirmation of NAFLD (Prashanth et al., 2009).

Elevated serum alanine amino transferase (ALT) concentration has
been used to estimate the prevalence of liver disease using pooled
data from the National Health and Nutrition Examination Survey
(NHANES) 1999–2004, which included 14,855 adult participants.
Using the definition of abnormal ALT (N30 IU/ml for men and
N19 IU/ml for women) (Prati et al., 2002), 41.7% of adult NHANES par-
ticipants were found to have liver disease. The adult NHANES III data
set demonstrated that 69% of all ALT elevations were not explained by
viral hepatitis, alcohol consumption, or hereditary hemochromatosis
(Clark et al., 2003). The authors concluded that NAFLD is probably re-
sponsible for the majority of cases of liver disease.

However, Suzuki et al. (2005) show chronological development of
elevated aminotransferases in a nonalcoholic population. Other terms
that have been used to describe NASH include pseudoalcoholic hepati-
tis, alcohol-like hepatitis, fatty liver hepatitis, steatonecrosis, and dia-
betic hepatitis (Zimmerman, 1999). NAFLD is subdivided into
nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis
(NASH). In NAFL, liver fatty inclusions are present without inflamma-
tion, whereas in NASH, fatty inclusions in hepatocytes are associated
with inflammation. The picture is morphologically indistinguishable
from alcoholic steatohepatitis (ASH). NAFLD does not require a liver bi-
opsy. However, liver biopsy is the only confirmation or exclusion of
NASH and the onlyway to determine disease severity. TheNAFLD activ-
ity score (NAS) is the sum of the biopsy's individual scores for steatosis
(0 to 3), lobular inflammation (0 to 2), hepatocellular ballooning (0 to
2), and fibrosis (0 to 4). An NAS b3 corresponds to NAFL, 3 to 4 corre-
sponds to borderline NASH, and a score ≥5 corresponds to NASH
(Kleiner et al., 2005; Brunt and Tiniakos, 2010; Brunt et al., 1999).
NASH is commonly associated with perisinusoidal and perivenular fi-
brosis that may progress to cirrhosis. About 30–40% of patients with
NAFLD develop NASH.Moreover, it is estimated that 10–30% of patients
with NAFLD develop cirrhosis after 10 years, leading to hepatocellular
carcinoma (NASH is believed to be a mitochondrial disease arising
from the inability of the mitochondria to adapt to fat oversupply
(Caldwell et al., 2004). The following schematic representation presents
how lipid peroxidation generated by reactive oxygen species influence
the inflammatory status by activating and releasing inflammatory and
profibrotic cytokines (Fig. 7).

Therapeutic interventions may reduce hepatic steatosis and the
development of necro-inflammation/fibrosis by reversing defects at
3 levels: 1) reducing substrate supply for lipogenesis a) from excess
dietary triglycerides, or b) from excessive lipolysis and free fatty acid
[FFA] flux to the liver from insulin-resistant adipose tissue; 2) acti-
vating key molecular steps that stimulate fatty acid oxidation and/
or inhibit hepatic lipogenesis (i.e., AMP-activated protein kinase
[AMPK]); or 3) by ameliorating the inflammation cascade generated
by mitochondrial dysfunction from fat overload (i.e., activation of
Kupffer cells, local production of cytokines, etc.).

The greater risk of progression of liver disease and the additional
cardiovascular risks associated with NASH provide the rationale for
identifying patients who have NASH. These considerations have led
to intense interest in the development of noninvasive methods for
the diagnosis, grading, staging and follow up of patients with
NASH.While several panels have been developed, they lack the diag-
nostic accuracy required for wide scale application. Therefore there
is an immediate need for a noninvasive method for evaluating and
monitoring the progress of NASH. Identifying the severity of liver
function in patients with NAFLD including those with NASH is a
major problem in decision-making in clinical hepatology.

The majority of the NAFLD/NASH patients in North America do not
drink actively, but they misuse alcohol sometime in their lifetime and
a possible alcohol-induced liver damage was triggered in that period
of time. Moreover, some do not consider dangerous drinking if they
have one of two episodes of alcohol misuse. The quantitative, measur-
able detection of drinking is important for the successful diagnosis and
treatment of alcohol misuse as well as NAFLD/NASH many of whom
continually deny drinking. The accurate identification of alcohol con-
sumption via biochemical tests contributes significantly to themonitor-
ing of drinking behavior both in ASH and NAFLD/NASH.

Rinella and Sanyal (2016) estimated the prevalence of NAFLD in the
USA to be 30% of the population. Therefore there is a real need for a re-
liable, non-invasivemethod to distinguish betweenNAFLD andNASH in
order to identify those patients most at risk of adverse outcomes and to
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provide them with the relevant information needed in order to make
the required lifestyle adjustments. More importantly there is a need to
recognize the severity of the disease using non-invasive biomarkers,
with particular emphasis on personalized pharmacologic therapy.

In 1998, the National Institutes of Health (NIH) Biomarkers Defini-
tions Working Group BDWG defined a biomarker as “a characteristic
that is objectively measured and evaluated as an indicator of normal bi-
ological processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention.”

A joint venture on chemical safety, the International Program on
Chemical Safety, led by the World Health Organization (WHO) and in
coordination with the United Nations and the International Labor Orga-
nization, has defined a biomarker as “any substance, structure or pro-
cess that can be measured in the body or its products and influence or
predict the incidence of outcome or disease.”

The definition of biomarkers includes “almost any measurement
reflecting an interaction between a biological system and a potential
hazard,whichmay be chemical, physical or biological. Themeasured re-
sponse may be functional and physiological, biochemical at the cellular
level or a molecular interaction. Understanding the clinical importance
of biomarkers that indicate the severity of NAFL and the more severe
stageNASH aswell as following the biomarkers' status in time (kinetics)
is a possible therapeutic endeavor. In clinical safety assessment, com-
pounds in early development of therapeutics often show signs of toxic-
ity during clinical trials. The use of biomarkers, and in particular
laboratory-measured biomarkers, in clinical research is somewhat
newer, and the best approaches to this practice are still being developed
and refined. The key issue at hand is determining the relationship be-
tween any givenmeasurable biomarker and relevant clinical endpoints.
An essential element of biomarkers used for clinical decision-making is
that the marker is clinically relevant and clinically valid. The challenge
has to identify the mechanism of the disease progression from NAFLD
to NASH, as well as, biomarkers, which can be developed into targeted
assays. In our studies we used as a biomarker of apoptosis in NASH-
cleaved caspase cytokeratine 8 (CCK18-M30) correlating the levels in
sera and in the biopsy of the same patient.

Immunohistochemical staining of a precursor caspase is clearly rep-
resented in a biopsy of a patient with NASH (Fig. 7). The field of biopsy
contains hepatocytes presenting macro-vesicular steatosis. Very few
hepatocytes present microvesicular steatosis.

Also NAFL/NASH individuals have a cytokine profile that is different
from healthy individuals and from one condition to the other. There is a
correlation between cytokines and the severity of the disease. More-
over, the cytokine profile is altered during the course of therapy. Cyto-
kine levels in sera can be used to predict the severity of the disease, to
monitor the progression of the disease and to predict the outcome of
the therapy (Fig. 8).

Previously, assessment of the MS and NAFLD has involved the anal-
ysis of serum or plasma biomarkers including total cholesterol (TC), tri-
glycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-
density lipoprotein cholesterol (LDL-C), insulin, and C-peptide.

Miele et al. (2009) considered serum levels of hyaluronic acid and
tissue metalloproteinase inhibitor-1 combined with age to predict
the presence of nonalcoholic steatohepatitis in a pilot cohort of sub-
jects with nonalcoholic fatty liver disease. More recently, biomarkers
such as apolipoprotein (apo)-AI and apo-B have been proposed as
predictors.

Similarly, leptin, adiponectin, free fatty acids (FFA), and ghrelin are
emerging biomarkers of insulin resistance (Friedman and Halaas,
1998; Halaas et al., 1995; Silha et al., 2003; Trujillo and Scherer, 2005).
Of the latter group, adiponectin, ghrelin, and free fatty acid (FFA) have
also been implicated as biomarkers of insulin resistance and NAFL (de
Jongh et al., 2004; Ouchi et al., 1999; Katugampola et al., 2002).

Adipokines derived from visceral adipose tissue are delivered directly
to the liver via the portal vein (Eguchi et al., 2006). Adiponectin is an anti-
inflammatory cytokine. Hypo-adiponectinemia has been suggested to
play a role in the progression from NAFLD to NASH (Musso et al., 2005).
Also, our studies have indicated associations between inflammation in
NASH and serum levels of inflammatory cytokines including tumor ne-
crosis factor-α (TNF-α) and fibrosis with transforming growth factor
beta (TGF-b). Relevance on the contribution of adipokines in inflamma-
tion and repair of liver damage produced by lipids continues to be our
translational research aim. We describe recently adipokine levels in pa-
tients with biopsy-proven NAFLD and NASH, showing that these
adipokines are associated with liver histology and more specifically
with the degree of liver steatosis (Neuman et al., 2015a).

An additional marker, circulating resistin levels were positively
associated with histological steatosis, portal inflammation and NAS
in patients with NAFLD and NASH (Pagano et al., 2006). The study
groups of Senates et al., 2012 and Milner et al. (2009) suggested
that adipocyte-fatty acid binding protein (AFABP) may play a role
in NAFLD progression. The authors indicated that serum AFABP is
positively correlated with inflammation, ballooning and fibrosis
in non-obese patients with NAFLD. Also AFABP had a positive asso-
ciation with lobular inflammation, hepatocellular ballooning and
NAS. Hepatocellular ballooning remained independently associat-
ed with AFABP on multiple linear regression also correcting for
age, BMI, fasting glucose, total cholesterol, triglyceride, steatosis
and fibrosis (Shen et al., 2012).

Another adipokine, vaspin was suggested to associate with liver
histology in studies with biopsy-proven NAFLD patients. Kukla et
al. (2010) found a positive correlation between serum vaspin levels
and cell ballooning in obese NAFLD individuals. Also, Aktas et al.
(2011) reported that vaspin is correlated with liver fibrosis. How-
ever, vaspin levels were not correlated with histology in non-dia-
betic non-obese NASH individuals (Genc et al., 2011, 2013).

Biomarkers such as apelin-12 (Ercin et al., 2010) and apelin-36
(Aktas et al., 2011), could not be correlated with histology.

Bozaoglu et al. (2007) described chemerin to be associated with
obesity and metabolic syndrome, while Takahashi et al. (2008) ob-
served that chemerin enhances insulin signaling and potentiates insu-
lin-stimulated glucose uptake in cultured adipocytes. Moreover,
Krautbauer et al. (2013) observed that chemerin is highly expressed
in hepatocytes and is induced in NASH-liver. Yilmaz et al. (2011) pro-
posed serum levels of omentin, chemerin and adipsin to be measured
in patients with biopsy-proven NAFLD. Monitoring disease progression
or repair by following changes in cyto-adipokine levels is a new strat-
egy that does not exclude liver biopsy, but together with imaging and
clinical examination can reduce the frequency of histological
examination.

Moreover there are functional tests that have been proposed to
be used in NAFLD/NASH such as: (13)C-Octanoate Breath Test
(Miele et al., 2003).

While several therapeutic strategies have been proposed to improve
this condition, there are also non-medicinal interventions used to re-
duce liver involvement or to prevent the disease altogether. The likely
development of effective therapies e.g. thiazolidinediones for NASH
provides further impetus for the identification of those with risk to dis-
ease progression. Although pharmacological therapy has been tried it is
only partially successful and the cornerstone of successful therapy con-
sists of weight loss and physical exercise. Thus therapy of this common
condition requires for most patients a decision to change their lifestyle
(Neuman et al., 2015c). Lifestyle intervention is important for all pa-
tients irrespective of NAFL/NASH stage. This is not easy to achieve and
maintain in the long term. Although much progress has been made in
the past decade with respect to understanding NAFL/NASH and devel-
oping partially effective therapies, much more needs to be learned
about disease pathogenesis as this is the key to developingmore broad-
ly effective management strategies and treatments. These therapies
should be targeted to the individuals knowing the specific stage of the
disease those most likely to benefit from the specific intervention
knowing the risk factors for disease progression.
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