136 research outputs found
Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models
Abstract. Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorological and chemical data; however, because CCMM are fairly recent, data assimilation in CCMM has been limited to date. We review here the current status of data assimilation in atmospheric chemistry models with a particular focus on future prospects for data assimilation in CCMM. We first review the methods available for data assimilation in atmospheric models, including variational methods, ensemble Kalman filters, and hybrid methods. Next, we review past applications that have included chemical data assimilation in chemical transport models (CTM) and in CCMM. Observational data sets available for chemical data assimilation are described, including surface data, surface-based remote sensing, airborne data, and satellite data. Several case studies of chemical data assimilation in CCMM are presented to highlight the benefits obtained by assimilating chemical data in CCMM. A case study of data assimilation to constrain emissions is also presented. There are few examples to date of joint meteorological and chemical data assimilation in CCMM and potential difficulties associated with data assimilation in CCMM are discussed. As the number of variables being assimilated increases, it is essential to characterize correctly the errors; in particular, the specification of error cross-correlations may be problematic. In some cases, offline diagnostics are necessary to ensure that data assimilation can truly improve model performance. However, the main challenge is likely to be the paucity of chemical data available for assimilation in CCMM
Cellular location and activity of Escherichia coli RecG proteins shed light on the function of its structurally unresolved C-terminus
RecG is a DNA translocase encoded by most species of bacteria. The Escherichia coli protein targets branched DNA substrates and drives the unwinding and rewinding of DNA strands. Its ability to remodel replication forks and to genetically interact with PriA protein have led to the idea that it plays an important role in securing faithful genome duplication. Here we report that RecG co-localises with sites of DNA replication and identify conserved arginine and tryptophan residues near its C-terminus that are needed for this localisation. We establish that the extreme C-terminus, which is not resolved in the crystal structure, is vital for DNA unwinding but not for DNA binding. Substituting an alanine for a highly conserved tyrosine near the very end results in a substantial reduction in the ability to unwind replication fork and Holliday junction structures but has no effect on substrate affinity. Deleting or substituting the terminal alanine causes an even greater reduction in unwinding activity, which is somewhat surprising as this residue is not uniformly present in closely related RecG proteins. More significantly, the extreme C-terminal mutations have little effect on localisation. Mutations that do prevent localisation result in only a slight reduction in the capacity for DNA repair. © 2014 The Author(s)
Approach to Dyslipidemia, Lipodystrophy, and Cardiovascular Risk in Patients with HIV Infection
There is a significant prevalence (20%–80% depending on the population and the study) of lipid disorders and other cardiovascular risk factors in people living with HIV infection. This review focuses on HIV and HIV treatment–associated metabolic and cardiovascular concerns, including dyslipidemias, lipodystrophy syndromes, endothelial dysfunctions, and associated metabolic events such as insulin resistance. Emerging hypotheses of the underlying pathophysiology of these issues, with impact on selection of specific antiretroviral treatment (ART) strategies, therapy, and preventive approaches to decreasing cardiovascular risk and other problems associated with these syndromes are discussed. Screening for cardiovascular risk as part of the decision of starting antiretroviral therapy, and during care of patients with HIV regardless of ART therapy status, is suggested with particular areas of focus. Statins, other hyperlipidemic therapies, treatment for specific problems arising due to lipodystrophy, and implications on ART selection to avoid drug interactions and adverse effects are also discussed
Replication Fork Reversal after Replication–Transcription Collision
Replication fork arrest is a recognized source of genetic instability, and transcription is one of the most prominent causes of replication impediment. We analyze here the requirement for recombination proteins in Escherichia coli when replication–transcription head-on collisions are induced at a specific site by the inversion of a highly expressed ribosomal operon (rrn). RecBC is the only recombination protein required for cell viability under these conditions of increased replication-transcription collisions. In its absence, fork breakage occurs at the site of collision, and the resulting linear DNA is not repaired and is slowly degraded by the RecJ exonuclease. Lethal fork breakage is also observed in cells that lack RecA and RecD, i.e. when both homologous recombination and the potent exonuclease V activity of the RecBCD complex are inactivated, with a slow degradation of the resulting linear DNA by the combined action of the RecBC helicase and the RecJ exonuclease. The sizes of the major linear fragments indicate that DNA degradation is slowed down by the encounter with another rrn operon. The amount of linear DNA decreases nearly two-fold when the Holliday junction resolvase RuvABC is inactivated in recB, as well as in recA recD mutants, indicating that part of the linear DNA is formed by resolution of a Holliday junction. Our results suggest that replication fork reversal occurs after replication–transcription head-on collision, and we propose that it promotes the action of the accessory replicative helicases that dislodge the obstacle
N-Terminal Gly224–Gly411 Domain in Listeria Adhesion Protein Interacts with Host Receptor Hsp60
Listeria adhesion protein (LAP) is a housekeeping bifunctional enzyme consisting of N-terminal acetaldehyde dehydrogenase (ALDH) and C-terminal alcohol dehydrogenase (ADH). It aids Listeria monocytogenes in crossing the epithelial barrier through a paracellular route by interacting with its host receptor, heat shock protein 60 (Hsp60). To gain insight into the binding interaction between LAP and Hsp60, LAP subdomain(s) participating in the Hsp60 interaction were investigated.Using a ModBase structural model, LAP was divided into 4 putative subdomains: the ALDH region contains N1 (Met(1)-Pro(223)) and N2 (Gly(224)-Gly(411)), and the ADH region contains C1 (Gly(412)-Val(648)) and C2 (Pro(649)-Val(866)). Each subdomain was cloned and overexpressed in Escherichia coli and purified. Purified subdomains were used in ligand overlay, immunofluorescence, and bead-based epithelial cell adhesion assays to analyze each domain's affinity toward Hsp60 protein or human ileocecal epithelial HCT-8 cells.The N2 subdomain exhibited the greatest affinity for Hsp60 with a K(D) of 9.50±2.6 nM. The K(D) of full-length LAP (7.2±0.5 nM) to Hsp60 was comparable to the N2 value. Microspheres (1 µm diameter) coated with N2 subdomain showed significantly (P<0.05) higher binding to HCT-8 cells than beads coated with other subdomains and this binding was inhibited when HCT-8 cells were pretreated with anti-Hsp60 antibody to specifically block epithelial Hsp60. Furthermore, HCT-8 cells pretreated with purified N2 subdomain also reduced L. monocytogenes adhesion by about 4 log confirming its involvement in interaction with epithelial cells.These data indicate that the N2 subdomain in the LAP ALDH domain is critical in initiating interaction with mammalian cell receptor Hsp60 providing insight into the molecular mechanism of pathogenesis for the development of potential anti-listerial control strategies
An ex-vivo Human Intestinal Model to Study Entamoeba histolytica Pathogenesis
Amoebiasis (a human intestinal infection affecting 50 million people every year) is caused by the protozoan parasite Entamoeba histolytica. To study the molecular mechanisms underlying human colon invasion by E. histolytica, we have set up an ex vivo human colon model to study the early steps in amoebiasis. Using scanning electron microscopy and histological analyses, we have established that E. histolytica caused the removal of the protective mucus coat during the first two hours of incubation, detached the enterocytes, and then penetrated into the lamina propria by following the crypts of LieberkĂĽhn. Significant cell lysis (determined by the release of lactodehydrogenase) and inflammation (marked by the secretion of pro-inflammatory molecules such as interleukin 1 beta, interferon gamma, interleukin 6, interleukin 8 and tumour necrosis factor) were detected after four hours of incubation. Entamoeba dispar (a closely related non-pathogenic amoeba that also colonizes the human colon) was unable to invade colonic mucosa, lyse cells or induce an inflammatory response. We also examined the behaviour of trophozoites in which genes coding for known virulent factors (such as amoebapores, the Gal/GalNAc lectin and the cysteine protease 5 (CP-A5), which have major roles in cell death, adhesion (to target cells or mucus) and mucus degradation, respectively) were silenced, together with the corresponding tissue responses. Our data revealed that the signalling via the heavy chain Hgl2 or via the light chain Lgl1 of the Gal/GalNAc lectin is not essential to penetrate the human colonic mucosa. In addition, our study demonstrates that E. histolytica silenced for CP-A5 does not penetrate the colonic lamina propria and does not induce the host's pro-inflammatory cytokine secretion
Application du pompage de charge Ă trois niveaux aux transistors MOS submicroniques
We have used a three-level charge pumping technique on submicronic MOS transistors.
The energy distribution of capture cross sections of electron Si/SiO interface
states has been determined, showing a great variation of this values with energy.
Taking into account this dependency, a very simple method to calculate the energy
distribution of interface states density on an energy scale in the silicon bandgap
including the midgap is proposed. The results are compared with values obtained
with the two-level standard charge pumping technique.Nous avons mis en oeuvre une technique de pompage de charge Ă trois niveaux sur
des transistors MOS submicroniques. Le spectre des sections efficaces de capture
des pièges à électrons de l'interface Si/SiO a ainsi été déterminé, mettant en
Ă©vidence une forte variation de celles-ci avec l'Ă©nergie. Compte tenu de ce fait,
une méthode d'exploitation très simple, conduisant au calcul de la répartition
spectrale de la densité d'états d'interface dans un domaine énergétique incluant
le milieu de la bande interdite du silicium, est proposée. Ces résultats sont
comparés à ceux obtenus par la technique du pompage de charge classique à deux
niveaux de tension
Relation between Indoor and Outdoor Exposure to Fine Particles Near a Busy Arterial Road
Various studies on indoor and outdoor particulate matter in the urban environment in the vicinity of busy arterial roads in the centre of the subtropical city of Brisbane have indicated that the revised United States Environmental Protection agency National Ambient air Quality Standards for Particulate matter PM2.5 could be exceeded not only outdoors but also indoors. The aim of this work was to investigate outdoor exposure to submicrometer particles and their relationship with indoor exposure in a hypothetical office building located in the vicinity of a busy arterial road. The outdoor exposure values and trends were measured in terms of particle number in the submicrometer size range and were then recalculated to represent mass concentration trends. The results of this study indicate that exposure to PM0.7 particles in ambient air close to a busy road often exceeds the levels of the annual and 24-hour US EPA NAAQS PM2.5 standards. It is likely that exposure to PM2.5 is even higher, and may significantly exceed these standards
- …