247 research outputs found

    Zonal winds at high latitudes on Venus: An improved application of cyclostrophic balance to Venus Express observations

    Get PDF
    Recent retrievals of zonal thermal winds obtained in a cyclostrophic regime on Venus are generally consistent with cloud tracking measurements at mid-latitudes, but become unphysical in polar regions where the values obtained above the clouds are often less than or close to zero. Using a global atmospheric model, we show that the main source of errors that appear in the polar regions when retrieving the zonal thermal winds is most likely due to uncertainties in the zonal wind intensity in the choice of the lower boundary condition. Here we suggest a new and robust method to better estimate the lower boundary condition for high latitudes, thereby improving the retrieved zonal thermal winds throughout the high latitudes middle atmosphere. This new method is applied to temperature fields derived from Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) data on board the Venus Express spacecraft. We obtain a zonal thermal wind field that is in better agreement with other, more direct methods based on either retrieving the zonal winds from cloud tracking or from direct measurements of the meridional slope of pressure surfaces

    Venus transit 2004: Illustrating the capability of exoplanet transmission spectroscopy

    Full text link
    The transit of Venus in 2004 offered the rare possibility to remotely sense a well-known planetary atmosphere using ground-based observations for absorption spectroscopy. Transmission spectra of Venus' atmosphere were obtained in the near infrared using the Vacuum Tower Telescope (VTT) in Tenerife. Since the instrument was designed to measure the very bright photosphere of the Sun, extracting Venus' atmosphere was challenging. CO_2 absorption lines could be identified in the upper Venus atmosphere. Moreover, the relative abundance of the three most abundant CO_2 isotopologues could be determined. The observations resolved Venus' limb, showing Doppler-shifted absorption lines that are probably caused by high-altitude winds. This paper illustrates the ability of ground-based measurements to examine atmospheric constituents of a terrestrial planet atmosphere which might be applied in future to terrestrial extrasolar planets.Comment: 7 pages, 5 figures, 1 tabl

    Temporary ectropion therapy by adhesive taping: a case study

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Various surgical procedures are available to correct paralytic ectropion, which are applied in irreversible facial paresis. Problems occur when facial paresis has an unclear prognosis, since surgery of the lower eyelid is usually irreversible. We propose a simple method to correct temporary ectropion in facial palsy by applying an adhesive strip.</p> <p>Patients and methods</p> <p>Ten patients with peripheral facial paresis and paralytic ectropion were treated with an adhesive strip to correct paralytic ectropion. We used "Steri-Strips" (45 × 6.0 mm), which were taped on the carefully cleaned skin of the lower eyelid and of the adjacent zygomatic region until the prognosis of the paresis was clarified. In addition to the examiner's evaluation of the lower lacrimal point in the lacrimal lake, subjective improvement of the symptoms was assessed using a visual analogue scale (VAS, 1–10).</p> <p>Results</p> <p>9 patients reported a clear improvement of the symptoms after adhesive taping. There was a clear regression of tearing (VAS (median) = 8; 1 = no improvement, 10 = very good improvement), the cosmetic impairment of the adhesive tape was low (VAS (median) = 2.5; 1 = no impairment, 10 = severe impairment) and most of the patients found the use of the adhesive strip helpful. There was slight reddening of the skin in one case and well tolerated by the facial skin in the other cases.</p> <p>Conclusion</p> <p>The cause and location of facial nerve damage are decisive for the type of surgical therapy. In potentially reversible facial paresis, procedures should be used that are easily performed and above all reversible without complications. Until a reliable prognosis of the paresis can be made, adhesive taping is suited for the temporary treatment of paralytic ectropion. Adhesive taping is simple and can be performed by the patient.</p

    Huygens HASI servo accelerometer: a review and lessons learned

    Get PDF
    The Servo accelerometer constituted a vital part of the Huygens Atmospheric Structure Instrument (HASI): flown aboard the Huygens probe, it operated successfully during the probe's entry, descent, and landing on Titan, on 14th January 2005. This paper reviews the Servo accelerometer, starting from its development/assembly in the mid-1990s, to monitoring its technical performance through its seven-year long in-flight (or cruise) journey, and finally its performance in measuring acceleration (or deceleration) upon encountering Titan's atmosphere. The aim of this article is to review the design, ground tests, in-flight tests and operational performance of the Huygens Servo accelerometer. Techniques used for data analysis and lessons learned that may be useful for accelerometry payloads on future planetary missions are also addressed. The main finding of this review is that the conventional approach of having multiple channels to cover a very broad measurement range: from 10-6 g to the order of 10 g (where g = Earth's surface gravity, 9.8 m/s2), with on-board software deciding which of the channels to telemeter depending on the magnitude of the measured acceleration, works well. However, improvements in understanding the potential effects of the sensor drifts and ageing on the measurements can be achieved in future missions by monitoring the 'scale factor' – a measure of such sensors' sensitivity, along with the already implemented monitoring of the sensor's offset during the in-flight phase

    Implications of Preliminary VEGA Balloon Results for the Venus Atmosphere Dynamics

    Get PDF
    The typical 1-2 m/sec vertical winds encountered by the Vega balloons probably result from thermal convection. The consistent 6.5-kelvin differential between the Vega 1 and Vega 2 temperatures is attributable to disturbances of synoptic or planetary scale. According to the Doppler tracking the winds were stronger than on earlier missions, perhaps because of solar thermal tides. The motions of Vega 2 may have been affected by waves from mountainous terrain

    Computations of Viking Lander Capsule Hypersonic Aerodynamics with Comparisons to Ground and Flight Data

    Get PDF
    Comparisons are made between the LAURA Navier-Stokes code and Viking Lander Capsule hypersonic aerodynamics data from ground and flight measurements. Wind tunnel data are available for a 3.48 percent scale model at Mach 6 and a 2.75 percent scale model at Mach 10.35, both under perfect gas air conditions. Viking Lander 1 aerodynamics flight data also exist from on-board instrumentation for velocities between 2900 and 4400 m/sec (Mach 14 to 23.3). LAURA flowfield solutions are obtained for the geometry as tested or flown, including sting effects at tunnel conditions and finite-rate chemistry effects in flight. Using the flight vehicle center-of-gravity location (trim angle approx. equals -11.1 deg), the computed trim angle at tunnel conditions is within 0.31 degrees of the angle derived from Mach 6 data and 0.13 degrees from the Mach 10.35 trim angle. LAURA Mach 6 trim lift and drag force coefficients are within 2 percent of measured data, and computed trim lift-to-drag ratio is within 4 percent of the data. Computed trim lift and drag force coefficients at Mach 10.35 are within 5 percent and 3 percent, respectively, of wind tunnel data. Computed trim lift-to-drag ratio is within 2 percent of the Mach 10.35 data. Using the nominal density profile and center-of-gravity location, LAURA trim angle at flight conditions is within 0.5 degrees of the total angle measured from on-board instrumentation. LAURA trim lift and drag force coefficients at flight conditions are within 7 and 5 percent, respectively, of the flight data. Computed trim lift-to-drag ratio is within 4 percent of the data. Computed aerodynamics sensitivities to center-of-gravity location, atmospheric density, and grid refinement are generally small. The results will enable a better estimate of aerodynamics uncertainties for future Mars entry vehicles where non-zero angle-of-attack is required

    Thermal structure in the Venus middle cloud layer

    Get PDF
    Thermal structure measurements obtained by the two Vega balloons show the Venus atmosphere in the middle cloud layer to be near-adiabatic, on the whole; but discrete air masses are present that differ slightly from one another in potential temperature and entropy. The Vega 1 temperatures are 6.5 K warmer than measured by Vega 2 at given pressures. Measurements taken by the Vega 2 lander on descent through these levels agree with the Vega 2 balloon data

    Viking Afterbody Heating Computations and Comparisons to Flight Data

    Get PDF
    Computational fluid dynamics predictions of Viking Lander 1 entry vehicle afterbody heating are compared to flight data. The analysis includes a derivation of heat flux from temperature data at two base cover locations, as well as a discussion of available reconstructed entry trajectories. Based on the raw temperature-time history data, convective heat flux is derived to be 0.63-1.10 W/sq cm for the aluminum base cover at the time of thermocouple failure. Peak heat flux at the fiberglass base cover thermocouple is estimated to be 0.54-0.76 W/sq cm, occurring 16 seconds after peak stagnation point heat flux. Navier-Stokes computational solutions are obtained with two separate codes using an 8-species Mars gas model in chemical and thermal non-equilibrium. Flowfield solutions using local time-stepping did not result in converged heating at either thermocouple location. A global time-stepping approach improved the computational stability, but steady state heat flux was not reached for either base cover location. Both thermocouple locations lie within a separated flow region of the base cover that is likely unsteady. Heat flux computations averaged over the solution history are generally below the flight data and do not vary smoothly over time for both base cover locations. Possible reasons for the mismatch between flight data and flowfield solutions include underestimated conduction effects and limitations of the computational methods

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    Meteorological Data Along the VEGA-1 and VEGA-2 Float Paths

    Get PDF
    During their flight through the Venus atmosphere the Vega 1 and Vega 2 balloon craft measured the pressure and temperature of the ambient medium, the vertical wind-velocity component (relative to the gondola), the cloud-layer backscatter coefficient, the mean illumination level, and the number and time of possible lightning flashes. In addition, the ground radio telescope network measured the balloon positions and drift velocities by the differential VLBI technique; these data are now being processed
    • …
    corecore