214 research outputs found
Exchange of ejecta between Telesto and Calypso: Tadpoles, horseshoes, and passing orbits
We have numerically integrated the orbits of ejecta from Telesto and Calypso,
the two small Trojan companions of Saturn's major satellite Tethys. Ejecta were
launched with speeds comparable to or exceeding their parent's escape velocity,
consistent with impacts into regolith surfaces. We find that the fates of
ejecta fall into several distinct categories, depending on both the speed and
direction of launch.
The slowest ejecta follow sub-orbital trajectories and re-impact their source
moon in less than one day. Slightly faster debris barely escape their parent's
Hill sphere and are confined to tadpole orbits, librating about Tethys'
triangular Lagrange points L4 (leading, near Telesto) or L5 (trailing, near
Calypso) with nearly the same orbital semi-major axis as Tethys, Telesto, and
Calypso. These ejecta too eventually re-impact their source moon, but with a
median lifetime of a few dozen years. Those which re-impact within the first
ten years or so have lifetimes near integer multiples of 348.6 days (half the
tadpole period).
Still faster debris with azimuthal velocity components >~ 10 m/s enter
horseshoe orbits which enclose both L4 and L5 as well as L3, but which avoid
Tethys and its Hill sphere. These ejecta impact either Telesto or Calypso at
comparable rates, with median lifetimes of several thousand years. However,
they cannot reach Tethys itself; only the fastest ejecta, with azimuthal
velocities >~ 40 m/s, achieve "passing orbits" which are able to encounter
Tethys. Tethys accretes most of these ejecta within several years, but some 1 %
of them are scattered either inward to hit Enceladus or outward to strike
Dione, over timescales on the order of a few hundred years
TEMPO2, a new pulsar timing package. I: Overview
Contemporary pulsar timing experiments have reached a sensitivity level where
systematic errors introduced by existing analysis procedures are limiting the
achievable science. We have developed tempo2, a new pulsar timing package that
contains propagation and other relevant effects implemented at the 1ns level of
precision (a factor of ~100 more precise than previously obtainable). In
contrast with earlier timing packages, tempo2 is compliant with the general
relativistic framework of the IAU 1991 and 2000 resolutions and hence uses the
International Celestial Reference System, Barycentric Coordinate Time and
up-to-date precession, nutation and polar motion models. Tempo2 provides a
generic and extensible set of tools to aid in the analysis and visualisation of
pulsar timing data. We provide an overview of the timing model, its accuracy
and differences relative to earlier work. We also present a new scheme for
predictive use of the timing model that removes existing processing artifacts
by properly modelling the frequency dependence of pulse phase.Comment: Accepted by MNRA
The butterfly diagram in the 18th century
Digitized images of the drawings by J.C. Staudacher were used to determine
sunspot positions for the period of 1749-1796. From the entire set of drawings,
6285 sunspot positions were obtained for a total of 999 days. Various methods
have been applied to find the orientation of the solar disk which is not given
for the vast majority of the drawings by Staudacher. Heliographic latitudes and
longitudes in the Carrington rotation frame were determined. The resulting
butterfly diagram shows a highly populated equator during the first two cycles
(Cycles 0 and 1 in the usual counting since 1749). An intermediate period is
Cycle 2, whereas Cycles 3 and 4 show a typical butterfly shape. A tentative
explanation may be the transient dominance of a quadrupolar magnetic field
during the first two cycles.Comment: Accepted for publication in Solar Physics, 1 table, 2 figure
Gravitational wave astronomy of single sources with a pulsar timing array
Abbreviated:
We investigate the potential of detecting the gravitational wave from
individual binary black hole systems using pulsar timing arrays (PTAs) and
calculate the accuracy for determining the GW properties. This is done in a
consistent analysis, which at the same time accounts for the measurement of the
pulsar distances via the timing parallax.
We find that, at low redshift, a PTA is able to detect the nano-Hertz GW from
super massive black hole binary systems with masses of \sim10^8 -
10^{10}\,M_{\sun} less than \,years before the final merger, and
those with less than years before merger may allow us to
detect the evolution of binaries.
We derive an analytical expression to describe the accuracy of a pulsar
distance measurement via timing parallax. We consider five years of bi-weekly
observations at a precision of 15\,ns for close-by (\,kpc)
pulsars. Timing twenty pulsars would allow us to detect a GW source with an
amplitude larger than . We calculate the corresponding GW and
binary orbital parameters and their measurement precision. The accuracy of
measuring the binary orbital inclination angle, the sky position, and the GW
frequency are calculated as functions of the GW amplitude. We note that the
"pulsar term", which is commonly regarded as noise, is essential for obtaining
an accurate measurement for the GW source location.
We also show that utilizing the information encoded in the GW signal passing
the Earth also increases the accuracy of pulsar distance measurements. If the
gravitational wave is strong enough, one can achieve sub-parsec distance
measurements for nearby pulsars with distance less than \,kpc.Comment: 16 pages, 5 figure,, accepted by MNRA
Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry
Aims. We determine the physical properties (spin state and shape) of asteroid
(21) Lutetia, target of the ESA Rosetta mission, to help in preparing for
observations during the flyby on 2010 July 10 by predicting the orientation of
Lutetia as seen from Rosetta.
Methods. We use our novel KOALA inversion algorithm to determine the physical
properties of asteroids from a combination of optical lightcurves,
disk-resolved images, and stellar occultations, although the latter are not
available for (21) Lutetia.
Results. We find the spin axis of (21) Lutetia to lie within 5 degrees of
({\lambda} = 52 deg., {\beta} = -6 deg.) in Ecliptic J2000 reference frame
(equatorial {\alpha} = 52 deg., {\delta} = +12 deg.), and determine an improved
sidereal period of 8.168 270 \pm 0.000 001 h. This pole solution implies the
southern hemisphere of Lutetia will be in "seasonal" shadow at the time of the
flyby. The apparent cross-section of Lutetia is triangular as seen "pole-on"
and more rectangular as seen "equator-on". The best-fit model suggests the
presence of several concavities. The largest of these is close to the north
pole and may be associated with large impacts.Comment: 17 pages, 5 figures, 3 tables, submitted to Astronomy and
Astrophysic
The field high-amplitude SX Phe variable BL Cam: results from a multisite photometric campaign. II. Evidence of a binary - possibly triple - system
Short-period high-amplitude pulsating stars of Population I ( Sct
stars) and II (SX Phe variables) exist in the lower part of the classical
(Cepheid) instability strip. Most of them have very simple pulsational
behaviours, only one or two radial modes being excited. Nevertheless, BL Cam is
a unique object among them, being an extreme metal-deficient field
high-amplitude SX Phe variable with a large number of frequencies. Based on a
frequency analysis, a pulsational interpretation was previously given. aims
heading (mandatory) We attempt to interpret the long-term behaviour of the
residuals that were not taken into account in the previous Observed-Calculated
(O-C) short-term analyses. methods heading (mandatory) An investigation of the
O-C times has been carried out, using a data set based on the previous
published times of light maxima, largely enriched by those obtained during an
intensive multisite photometric campaign of BL Cam lasting several months.
results heading (mandatory) In addition to a positive (161 3) x 10
yr secular relative increase in the main pulsation period of BL Cam, we
detected in the O-C data short- (144.2 d) and long-term ( 3400 d)
variations, both incompatible with a scenario of stellar evolution. conclusions
heading (mandatory) Interpreted as a light travel-time effect, the short-term
O-C variation is indicative of a massive stellar component (0.46 to 1
M_{\sun}) with a short period orbit (144.2 d), within a distance of 0.7 AU
from the primary. More observations are needed to confirm the long-term O-C
variations: if they were also to be caused by a light travel-time effect, they
could be interpreted in terms of a third component, in this case probably a
brown dwarf star ( 0.03 \ M_{\sun}), orbiting in 3400 d at a
distance of 4.5 AU from the primary.Comment: 7 pages, 5 figures, accepted for publication in A&
- …