216 research outputs found

    Dermatoglyphic patterns in type 2 diabetes mellitus

    Get PDF
    Dermatoglyphics is the study of epidermal ridge patterns on the palm, fingers, sole and toes. They are genetically determined and are useful in diagnosis of various genetic diseases like Diabetes mellitus. There are three types of fingerprint patterns: Arches, loops and whorls. Finger prints of both hands are not same and they persist throughout life unless there is damage to the dermis. The patterns of fingertip patterns begin to form around the 13th week of intrauterine life. These patterns are inherited in from genetic makeup of the parents but the inheritance is not purely Mendelian. They get modified during the first few weeks of the intrauterine life due to pressure on the finger pads and on the palms.Keywords: Epidermal, Dermatoglyphics, Genetic, Arche

    Optimizing the Drude-Lorentz model for material permittivity: Examples for semiconductors

    Get PDF
    Approximating the frequency dispersion of the permittivity of materials with simple analytical functions is of fundamental importance for understanding and modeling their optical properties. Quite generally, the permittivity can be treated in the complex frequency plane as an analytic function having a countable number of simple poles which determine the dispersion of the permittivity, with the pole weights corresponding to generalized conductivities of the medium at these resonances. The resulting Drude-Lorentz model separates the poles at frequencies with zero real part (Ohm's law and Drude poles) from poles with finite real part (Lorentz poles). To find the parameters of such an analytic function, we minimize the error weighted deviation between the model and measured values of the permittivity. We show examples of such optimizations for various semiconductors (Si, GaAs and Ge), for different frequency ranges and up to five pairs of Lorentz poles accounted for in the model.Comment: arXiv admin note: substantial text overlap with arXiv:1612.0692

    The bactericidal activity of glutaraldehyde-impregnated polyurethane

    Get PDF
    Although glutaraldehyde is known to be bactericidal in solution, its potential use to create novel antibacterial polymers suitable for use in healthcare environments has not been evaluated. Here, novel materials were prepared in which glutaraldehyde was either incorporated into polyurethane using a simple “swell-encapsulation-shrink” method (hereafter referred to as “glutaraldehyde-impregnated polyurethane”), or simply applied to the polymer surface (hereafter referred to as “glutaraldehyde-coated polyurethane”). The antibacterial activity of glutaraldehyde-impregnated and glutaraldehyde-coated polyurethane samples was tested against Escherichia coli and Staphylococcus aureus. Glutaraldehyde-impregnated polyurethane resulted in a 99.9% reduction in the numbers of E. coli within 2 h and a similar reduction of S. aureus within 1 h, whereas only a minimal reduction in bacterial numbers was observed when the biocide was bound to the polymer surface. After 15 days, however, the bactericidal activity of the impregnated material was substantially reduced presumably due to polymerization of glutaraldehyde. Thus, although glutaraldehyde retains antibacterial activity when impregnated into polyurethane, activity is not maintained for extended periods of time. Future work should examine the potential of chemical modification of glutaraldehyde and/or polyurethane to improve the useful lifespan of this novel antibacterial polymer

    White light-activated antimicrobial surfaces: effect of nanoparticles type on activity

    Get PDF
    Toluidine blue O (TBO) dye together with either silver (Ag) nanoparticles (NPs), gold (Au) NPs, or a mixture of Ag and Au NPs (Mix Ag–Au NPs) were incorporated into polyurethane to make antimicrobial surfaces using a swell-encapsulation-shrink process. Antimicrobial testing against Escherichia coli showed that inclusion of the NPs significantly enhanced the antimicrobial activities of the TBO polyurethane samples. In particular, samples containing Ag NPs exhibited potent antimicrobial activity under white light and surprisingly, also in the dark. The numbers of viable bacteria decreased below the detection limit on the TBO/Ag NPs incorporated samples within 3 h and 24 h under white light and dark conditions. A mechanistic study using furfuryl alcohol indicated that the enhanced photobactericidal activity was most likely due to a type I photochemical reaction. To the best of our knowledge, this is the first report of an antimicrobial surface comprised of a combination of Ag NPs and a light activated agent to provide a dual kill mechanism. These surfaces are promising candidates for use in healthcare environments to reduce the incidence of hospital-acquired infections

    Surface redox chemistry and mechanochemistry of insulating polystyrene nanospheres

    Get PDF
    Cyclic voltammetry (CV) of polystyrene nanospheres was carried out after immobilisation onto boron-doped diamond electrodes. Although the polystyrene is insulating, a voltammetric response was obtained. This was attributed to the high surface area of the nanospheres, allowing the redox chemistry of the polystyrene surface to be probed despite the non-conducting nature of the bulk. The polystyrene redox response was found to be strongly dependent on prior mechanical agitation. Centrifuged, sonicated and vortexed polystyrene nanospheres all exhibited significantly higher oxidation currents than the non-agitated polystyrene. Mechanical treatment by sonication and centrifugation was found to bring about changes to surface chemistry of the polystyrene spheres, in particular the introduction of oxygen functionalities. For these samples the CV response is attributed to the presence of surface phenol functionalities. On the non-agitated and vortex treated polystyrene surfaces X-ray photoelectron spectroscopy revealed an absence of oxygen functionalities that could explain the redox response. Repetition of the CV experiment in the presence of a solution spin trap suggests that radical species play a role in the observed response. For the vortexed sample the increased oxidation currents were attributed to significant surface roughening and deformation, as revealed by Transmission Electron Microscopy

    Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition

    Get PDF
    Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activity of these samples was tested against Escherichia coli and Staphylococcus aureus in the dark and under UV light (365 nm). All Ag-deposited films reduced the numbers of E. coli by 99.9% within 6 h and the numbers of S. aureus by 99.9% within only 2 h. FTO/Ag reduced bacterial numbers of E. coli to below the detection limit after 60 min and caused a 99.9% reduction of S. aureus within only 15 min of UV irradiation. Activ/Ag reduced the numbers of S. aureus by 66.6% after 60 min and TiO2/Ag killed 99.9% of S. aureus within 60 min of UV exposure. More remarkably, we observed a 99.9% reduction in the numbers of E. coli within 6 h and the numbers of S. aureus within 4 h in the dark using our novel TiO2/Ag system

    The South Asian genome

    Get PDF
    Genetics of disease Microarrays Variant genotypes Population genetics Sequence alignment AllelesThe genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world's population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and cardiovascular disease which are highly prevalent amongst South Asians.Whole genome sequencing to discover genetic variants underlying type-2 diabetes, coronary heart disease and related phenotypes amongst Indian Asians. Imperial College Healthcare NHS Trust cBRC 2011-13 (JS Kooner [PI], JC Chambers)

    Thiol-capped gold nanoparticles swell-encapsulated into polyurethane as powerful antibacterial surfaces under dark and light conditions

    Get PDF
    A simple procedure to develop antibacterial surfaces using thiol-capped gold nanoparticles (AuNPs) is shown, which effectively kill bacteria under dark and light conditions. The effect of AuNP size and concentration on photo-activated antibacterial surfaces is reported and we show significant size effects, as well as bactericidal activity with crystal violet (CV) coated polyurethane. These materials have been proven to be powerful antibacterial surfaces against both Gram-positive and Gram-negative bacteria. AuNPs of 2, 3 or 5 nm diameter were swell-encapsulated into PU before a coating of CV was applied (known as PU-AuNPs-CV). The antibacterial activity of PU-AuNPs-CV samples was tested against Staphylococcus aureus and Escherichia coli as representative Gram-positive and Gram-negative bacteria under dark and light conditions. All light conditions in this study simulated a typical white-light hospital environment. This work demonstrates that the antibacterial activity of PU-AuNPs-CV samples and the synergistic enhancement of photoactivity of triarylmethane type dyes is highly dependent on nanoparticle size and concentration. The most powerful PU-AuNPs-CV antibacterial surfaces were achieved using 1.0 mg mL−1 swell encapsulation concentrations of 2 nm AuNPs. After two hours, Gram-positive and Gram-negative bacteria were reduced to below the detection limit (>4 log) under dark and light conditions
    corecore