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Abstract

The genetic sequence variation of people from the Indian subcontinent who comprise one-quarter of the world’s
population, is not well described. We carried out whole genome sequencing of 168 South Asians, along with whole-exome
sequencing of 147 South Asians to provide deeper characterisation of coding regions. We identify 12,962,155 autosomal
sequence variants, including 2,946,861 new SNPs and 312,738 novel indels. This catalogue of SNPs and indels amongst
South Asians provides the first comprehensive map of genetic variation in this major human population, and reveals
evidence for selective pressures on genes involved in skin biology, metabolism, infection and immunity. Our results will
accelerate the search for the genetic variants underlying susceptibility to disorders such as type-2 diabetes and
cardiovascular disease which are highly prevalent amongst South Asians.
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Introduction

People originating from the Indian subcontinent (South Asians)

comprise one-quarter of the globe’s population. The 1000

Genomes Project has now systematically completed mapping the

genomes of .1000 Africans, Americans, East Asians, and

Europeans for genetic variation [1]. In contrast the genetic

sequences of just two South Asians have been reported [2,3].

South Asians are included in phases II and III of the 1000

Genome Project, but the present lack of knowledge of the South

Asian genome remains an important obstacle to understanding the

genetic mechanisms and biological pathways influencing the

phenotypic differences and susceptibility to diseases among South

Asians. We carried out next generation sequencing of 321 South

Asians from different geographic regions, linguistic and religious

groups (Figure 1, Figure S1, Table S1 in File S1) to compare

genetic variation between people of South Asians ancestry and

other major populations [4–6].

Results

DNA sequencing
We performed whole genome sequencing to a mean coverage of

4.3x (WGS-4x) amongst 168 South Asians. To provide detailed

evaluation of coding regions, we then completed whole-exome

sequencing (WES) amongst a further 147 South Asians. We report

variant discovery based on these WGS-4x and WES data. We

additionally carried out high-coverage WGS (WGS-28x, N = 8) to

inform the accuracy of variant discovery and imputation in the

low-coverage data. BAM files are available for download

(European Nucleotide Archive: accession number PRJEB5476).

Sequencing was carried out using Illumina GAIIx and

HiSeq2000 machines, with library preparation according to

Illumina protocols. We performed sequence alignment and variant

calling separately for WGS-4x, WGS-28x and WES. Short reads

were aligned to reference genome (build 37) using BWA [7].

Sequencing metrics for WGS and WES are summarised in Table
S2 in File S1. Mean coverage was 4.3x, 28.4x and 20.6x for
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WGS-4x, WGS-28x and WES respectively (Figure S3). Realign-

ment around indels and variant calling were done using the

Genome Analysis Toolkit (GATK) [8]. The quality scores for the

initial set of SNPs and indels called were recalibrated, using

dbSNP as a truth-set for machine learning, and filtered to provide

SNP and indel call sets with predicted positive predictive values of

99.9% and 95% respectively. Mean TiTv ratio for SNPs was

2.1260.01, 2.1360.01 and 2.6560.06 in WGS-4x, WGS-28x and

WES respectively (Figure S3). The initial SNP Het/Hom ratio

was 1.0560.11 in WGS-4x, compared to 1.5560.04 in WGS-28x,

consistent with undercalling of heterozygotes in low-coverage

sequencing. As expected, indels were enriched for variants that are

multiples of 3 base-pairs long in coding regions (Figure S4) [9].

We next used BEAGLE [10] to simultaneously phase the WGS-

4x data and, through haplotype inference, improve the accuracy of

SNP and indel genotype calls. Het/Hom ratio for SNPs increased

to 1.5760.06 (Figure S5), and the proportion of SNPs with a

difference of .1% in allele frequency compared to microarray

data fell from 29% in the unphased WGS-4x data to 4.3% in the

phased WGS-4x data (Figure S6 and Figure S7). After phasing

and haplotype inference, concordance of SNP genotype calls with

microarray data was comparable between the low coverage WGS-

4x and the high coverage WES data (Figure S8). Positive

predictive value for SNP calling was high for both phased WGS-4x

and WES data, compared to results from genotyping by

microarray (WGS-4x: 99.960.1%; WES: 99.760.1%, or direct

genotyping of 252 known and novel SNPs (100% for both WGS-

4x and WES, Table S3 in File S2 and Figure S9).

Compared to Illumina microarray, mean sensitivity for detec-

tion of SNPs was 91.960.2% and 99.260.1% in WGS-4x and

WES respectively. Results were similar for comparisons of WGS-

4x to WGS-28x SNP genotypes. We estimate that we have

identified .95% of SNPs with non-reference allele frequency $

0.5% in the mapped exome, and .95% of variants with non-

reference allele frequency $1.0% in the remainder of the mapped

genome (Figure S10).

We evaluated the accuracy of indel calling in the WGS-28x

samples by Sanger sequencing. We confirmed the presence of an

indel at 100% of 35 positions tested (Table S4 in File S1),

enabling us to use our WGS-28x calls as a truth-set for the WGS-

4x samples. Compared to indel genotypes called by WGS-28x,

sensitivity and positive predictive value for indel genotypes called

by WGS-4x were 58.4% and 96.0% respectively. Our findings are

consistent with published data, and demonstrate the continued

challenges posed by indel calling with low coverage data, even

with state of the art approaches [11,12].

Genetic variation amongst South Asians
We identify 11,538,889 autosomal SNPs by WGS-4x and

189,939 by WES, with average 3,120,893 SNPs per person by

WGS-4x and 34,698 by WES (Table 1, Figure S5). Overall we

report 11,624,872 autosomal SNPs including 2,946,861 novel

variants (Table S5 in File S1). We discovered 40,656 novel SNPs

that are common (AF$5%), 503,588 that are low frequency (AF$

1 and ,5%) and 2,402,617 rare variants (AF,1%). In total we

Figure 1. Location of birth (1A) and principal components analysis (PCA, 1B) of the South Asians sequenced. The PCA plots shows
results for all South Asians in the LOLIPOP study (SA - All, red circles), for South Asians sequenced (SA - NGS, black dots) and for HapMap2
populations.
doi:10.1371/journal.pone.0102645.g001
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find 70,746 non-synonymous SNPs, 1,445 SNPs affecting stop

codons, and 13,332 splice-site SNPs. Our discovery includes

30,914 novel nsSNPs, of which 2,960 are common or low

frequency variants.

We report 1,337,283 autosomal indels by WGS-4x and 25,750

by WES, with an average 733,326 indels per person by WGS-4x

and 10,217 by WES (Table 1). The novel autosomal indels

include 237,326 common and 60,373 low frequency alleles. 7,215

of the indels are predicted to affect protein coding, of which 3,349

have not been previously described (Table S6 in File S1). In

addition we report a further 370,719 SNPs and 43,121 indels on

the sex chromosomes, of which 117,197 and 17,201 are newly

described (Table S5 and Table S6 in File S1).

Imputation of genotypes amongst South Asians
We carried out imputation of the phased WGS-4x data amongst

South Asians, quantifying accuracy by comparison to i. whole

genome microarray data (Illumina 610, N = 6,557), and ii. high-

coverage WGS-28x data (N = 8). Imputation accuracy for

common variants was high using phased WGS-4x South Asian

haplotypes, and better than imputation using either unphased

South Asian data or haplotypes from the 1000 Genomes Project

(Figure 2). Our South Asian haplotypes provide higher imputa-

tion accuracy than the 1000 Genomes Project dataset (Figure
S11) even for low-frequency and rare variants.

The genotypes identified in our study thus provide the most

accurate available whole genome reference panel for imputation of

both shared and South Asian specific genetic variants. Our

resource will enable genetic association studies to accurately

identify variants underlying differences in phenotype and disease

susceptibility between South Asians and other populations.

Genetic variants shared with other populations and
allelic stratification

We find that the genetic variants with AF.5% amongst South

Asians are almost universally shared with all three of the 1000

Genomes populations (European [EUR], African [AFR] and East

Asian [ASN]) confirming that most common genetic variants are

cosmopolitan (Figure S12). However, allele frequencies show

substantial heterogeneity between populations (Figure S13); this

stratification may reflect founder effects, genetic drift or selective

pressure. We used Wright’s FST to identify alleles stratified

between South Asian and the 1000 Genomes Project populations

[13]. Mean FST between South Asians and European, East Asian

and African populations was 0.010, 0.028 and 0.040 respectively;

lower levels of FST between South Asians and Europeans are

consistent with more recent admixture between these populations

(Figure S14) [14].

We find that SNPs stratified between South Asians and

Europeans are strongly enriched for variants in coding regions

(P = 1024 to 10215, Figure 3, Table S7 in File S1). The SNPs

stratified between South Asians and Europeans at FST.0.10 are

most enriched for non-synonymous, splice site, and 59 UTR

variants (1.4 to 2.1 fold enrichment; P = 1023 to P = 10213,

Figure 3, Table S8 in File S1) with corresponding under-

representation of intergenic SNPs (0.80 fold enrichment,

P = 102135). Our findings are consistent allelic stratification arising

from selective pressure on functional genetic variants.

Allelic stratification shows regional clustering (Figure S15).

Pathway analysis shows that the non-synonymous, splice-site,

STOP and UTR SNPs most strongly differentiated between South

Asians and Europeans (FST.0.10, P,10213) identify genes

involved in the structure and function of the skin and eyes

(FLG, KRT3, HPS4, POU2F3, SLC45A2, TCHH, TYR, and

TYRP1), in metabolism (AQP2, NEUROD1, PNPLA2, VDR and

VLDLR), and in infection and immunity (including IFNGR1,

ITGA4, ITGAE, ITGAL, SH2B3 and TLR6; Table S9 in File
S2 and Table S10 in File S1, P,0.05).

We explored the potential biomedical relevance of allelic

stratification. We find strong enrichment for differentiated alleles

at genetic loci involved in susceptibility to skin cancers (6.4–10.8

fold enrichment, P,1023, Figure 4, Table S11 in File S1). We

also find allelic stratification at genetic loci associated with central

obesity, blood pressure, fasting glucose and triglyceride levels, core

components of the metabolic syndrome of insulin resistance (2.2–

3.5 fold enrichment, P,0.05) that is 3–4 fold more prevalent

common amongst South Asians than Europeans and considered to

underlie their high cardiovascular disease risk [15,16].

South Asian specific genetic variation
We identify 2,946,861 novel SNPs (Table S5), including 40,656

variants that are common (AF$5%), 503,588 that are low

frequency (AF$1 and ,5%) and 2,402,617 rare variants (AF,

1%). Novel genetic variants are less likely to be located in coding

regions than expected under the null hypothesis, consistent with

selection against sequence change in functional regions (P,10254,

Figure S16, Table S12 in File S1). As expected, selection is

strongest against STOP and non-synonymous SNPs, and most

evident at high allele frequencies (P = 1028 to P = 102212, Table

Table 1. SNPs and indels identified by low-coverage whole-genome sequencing (WGS-4x) and whole exome sequencing (WES)
amongst South Asians.

Per sample All samples

WGS-4x WES WGS-4x WES WGS-4x & WES

SNPs 3,120,893 34,698 11,538,889 189,939 11,624,616

Novel SNPs 39,061 3,272 2,885,370 73,900 2,946,861

nsSNP 9,569 8,225 45,201 48,104 70,746

Novel ns SNPs 158 238 12,919 20,910 30,914

Indels 733,326 11,042 1,337,283 25,750 1,352,706

Novel indels 108,127 4,664 301,104 13,126 312,738

Inframe/frameshift indels 484 598 2,994 4,837 7,215

Novel inframe/frameshift indels 49 313 727 2,813 3,349

doi:10.1371/journal.pone.0102645.t001
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Figure 2. Correlation between imputed and observed genotypes amongst South Asians, using phased or unphased genotypes
from low coverage WGS, or using 1000 Genomes Project data. Results are shown as mean r2 with genotypes observed from microarray data
(2A) or high-coverage WGS (2B, WGS-28x).
doi:10.1371/journal.pone.0102645.g002

Figure 3. Enrichment for coding variants amongst autosomal SNPs stratified between South Asians and the 1000 Genome
populations (3A) and for specific functional classes of SNPs amongst South Asians compared to Europeans (3B). Enrichment is
calculated compared to null hypothesis; P values are provided in Table S6 and Table S7 in File S1.
doi:10.1371/journal.pone.0102645.g003
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S12). We find 568 coding-region SNPs specific to South Asians

that are common (AF.5%). These are distributed between 502

genes; pathway analysis reveals these genes to be enriched for

involvement in carbohydrate and lipid metabolism, including

IGF1, IGF2, LDLR and LYN (P,0.01). Our results provide

preliminary evidence for South Asian specific genetic variants in

genes involved in energy storage and metabolism.

Most novel variants in South Asians are low-frequency or rare

(.95%). Rare and low-frequency variants are responsible for

familial disorders showing Mendelian patterns of inheritances, and

may also contribute to the unexplained heritability of common

disease [17]. Since rare and low frequency variants are not well

captured by common haplotypes and are difficult to impute [18]

(Figure S11), direct genotyping will be required for their

evaluation; given the number of variants involved this will likely

require a custom, South Asian specific microarray.

Population structure among South Asians
Principal components analysis reveals a North-South gradient

amongst South Asians, consistent with historic admixture of

northern Indo-Aryan people (Ancestral North Indians, ANI) with

predominantly southern Dravidian speakers (Ancestral South

Indian, ASI). Sharing of genetic variants with European and

African populations, is higher amongst South Asians with

predominant ANI rather than ASI ancestry (P,10214, Figure
S17), whilst ASI have ,30% more novel SNPs than ANI (P,

10240, Figure S18 and Figure S19). These observations are

consistent with previous reports identifying ASI as the earliest

inhabitants of the South subcontinent, and most diverged from

other populations [14,19].

Discussion

South Asians have 2–4 fold higher risk of type-2 diabetes and

cardiovascular disease compared to Europeans, but are protected

from other conditions such as skin cancer [20–22]. The lack of

knowledge of the patterns of genetic variation specific to South

Asians has been a major limitation to identification of the genetic

variants influencing disease susceptibility in this population [23].

Using whole-genome and whole-exome sequencing of South

Asians we reveal 3 million new genetic variants, including 40,656

SNPs that are novel and common, and 503,588 that are novel low

frequency SNPs. Population specific genetic variants can make an

important contribution to disease. For example the 25 bp deletion

in the gene encoding MYBPC3, present in ,4% of people from

the Indian subcontinent but not present in Europeans, confers an

,7 fold risk of heart failure [24]. Our results will accelerate the

search for South Asian specific genetic variation underlying the

Figure 4. Enrichment for stratified genetic variants at genetic loci associated with respective phenotype in genome-wide
association studies. Inset the correlation between the enrichment for stratified SNPs at known genetic loci, and enrichment of stratified variants for
SNPs associated with respective phenotype in genome-wide association studies. Further details are provided in Table S10 in File S1.
doi:10.1371/journal.pone.0102645.g004
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diseases of biomedical importance to this population. Our phased

haplotypes will provide improved accuracy for imputation of

genotypes in genome-wide association studies, and our catalogue

of South Asian SNPs and indels will enable the design of custom

microarrays to better study genetic variation in this population.

Skin cancer represents ,20–30% of malignancies in Europeans,

but just 1–2% of malignancies amongst South Asians. Epidermal

melanin provides the primary mechanism for photoprotection

against skin cancers [25]. We find evidence for allelic stratification

between South Asians and Europeans of variants in OCA2,

SLC45A2, SLC24A4, TYR, TYRP and other genes involved in

melanin pigmentation of skin, hair and eyes [26–29]. The

differentiation of risk alleles is sufficient to account entirely for

the increased pigmentation amongst South Asians, and may

explain the low incidence of skin cancers in this population

[30,31].

We find both population specific variants and allelic stratifica-

tion in multiple genes implicated in energy conservation, including

APOH, IGF1 and IGF2, LYN, LDLR, NEUROD1, PNPLA2
and VLDLR. APOH is a component of several circulating

lipoproteins and is involved in activation of lipoprotein lipase

[32]. Sequence variants in APOH are associated with LDL and

triglyceride levels, and APOH plasma concentrations are elevated

in people with T2D and metabolic syndrome [33]. IGF1 and

IGF2 are growth factors which activate the insulin receptor

[34,35], whilst LYN is a tyrosine-kinase found in liver and adipose

tissue which activates IRS1 leading to increased glucose utilisation

[36,37]. Our findings thus identify genetic variation amongst

South Asians involving a cluster of genes linked to core metabolic

traits including lipid metabolism, adipogenesis, insulin signalling

and T2D. This pattern of genetic may have been advantageous

amongst South Asians in historic conditions, consistent with a in

the context of unstable food supplies [38]. These potentially

protective variants may have become deleterious in changing

environments such as from rural to urban, and to westernised

societies, and may contribute to the increased risk of T2D and

obesity after migration amongst South Asians.

We identify stratification on many genes involved in immune

cell biology including IFNGR1, ITGA4, ITGAE, ITGAL, SH2B3
and TLR6. In particular, IFNGR1 encodes a component of the

interferon-gamma receptor, a key signalling mechanism in

immune activation. SNP rs1887415 in IFNGR1 is ,20-fold more

common amongst South Asians than Europeans; it introduces an

amino acid change in a domain reported to be involved in STAT

signalling, a major regulator of inflammation [39]. Genetic

variants in IFNGR1 influence susceptibility to mycobacterial

infection and cerebral malaria [40,41], major infectious diseases

which are endemic on the South subcontinent.

Our discovery of the genetic variants that are specific to South

Asians will now enable the design of customised microarrays to

search for the DNA sequence variants underlying susceptibility to

the type-2 diabetes and cardiovascular disease, which are highly

prevalent amongst South Asians. Our results also provide a

genome wide survey of allelic stratification between South Asians

and other populations. This resource will form the basis of future

studies to investigate the ancestral origins and selective pressures

that have shaped this major population group.

Methods

Participants
We sequenced 321 unrelated men of self-reported South Asian

ancestry (all 4 grandparents born on the Indian subcontinent),

participating in the London Life Sciences Population (LOLIPOP)

study and living in the UK [42]. LOLIPOP is a representative

sample of UK South Asians. Samples were selected based on the

following criteria: i. GWA data available to enable assessment for

population stratification and genotype concordance; ii first

generation migrant (ie born on the Indian subcontinent) and able

to provide the town nearest to their place of birth. The samples

selected for 4x-WGS were all male, to provide equal coverage of

the X and Y chromosomes. Sampling was otherwise at random.

The samples sequenced included individuals from a range of

geographic regions, religious and linguistic subgroups (Table S1
in File S1). Principal components analysis using whole genome

SNP data (Illumina Hap610 microarray) available for participants

confirmed that the South Asians sequenced were representative of

South Asians living on the Indian subcontinent (Figure S1 and
Figure S2). The research was approved by the West London

Research Ethics Committee (reference number: 07/H0712/150);

all participants gave written informed consent.

Library preparation
DNA libraries were prepared according to Illumina instructions.

For WGS, 3–5 mg of genomic DNA were fragmented by

nebulization with compressed nitrogen gas at 35 p.s.i. for 6 min.

DNA fragments with overhangs were end-repaired using T4 and

Klenow polymerases and T4 polynucleotide kinase with 10 mM

dNTP’s followed by addition of an ‘‘A’’ base at the ends using

Klenow exo fragment (39 to 59-exo minus) and dATP (1 mM).

Sequencing adaptors containing ‘‘T’’ overhangs were ligated to

the DNA products followed by agarose (2%) gel electrophoresis.

Fragments of about 400 bp were isolated from the gels (Qiagen

Gel Extraction Kit) and the adaptor-modified DNA fragments

were PCR enriched for 10-cycles using Phusion DNA polymerase

(Finnzymes Oy) and primers PE 1.0 and PE 2.0 (Illumina).

Enriched libraries were further purified using agarose (2%) gel

electrophoresis as described above. The quality and concentration

of the libraries was assessed using Nanodrop absorbance and by

the Agilent 2100 Bioanalyzer using the DNA 1000 LabChip

(Agilent).

For WES, 1 mcg of DNA was sheared using the Covaris E-

Series, and libraries prepared according to the Illumina TruSeq

method manual, using a gel-free protocol. Samples were tagged

using Illumina adapters before pooling. Samples were quantified

using the Invitrogen Qubit QuantIT system and the Agilent

Bioanalyzer HS DNA chip to check library sizing. Libraries were

then further quantified using the Kapa SYBR Fast Library Quant

Kit for Illumina GA (Anachem) to more accurately quantify

adapter-ligated DNA present in each sample library. Sample

libraries were pooled in groups of 6, all with differing tags, at

500 ng/sample, for a total DNA library mass of 3000 ng per pool.

Exome capture was performed using the Illumina TruSeq Exome

Enrichment kit, according to the provided method manual. Post-

enrichment, samples were again quantified using Qubit and

Bioanalyzer, and then again with the Kappa Library Quant Kit.

Samples were diluted to 2 nM in preparation for sequencing.

DNA sequencing
Paired-end sequencing-by-synthesis was performed on Illumina

GAIIx instruments (WGS) or HiSeq 2000 (WES). Template DNA

fragments were hybridized to the surface of the Illumina flow cells

and amplified to form clusters using the Illumina cluster station. In

brief, DNA (8–10 pM) was denatured followed by hybridization to

grafted adaptors on the flow cell. Isothermal bridge amplification

using Phusion polymerase was then followed by linearization of

the bridged DNA, denaturation and blocking of 39-ends and

hybridization of the sequencing primer. Samples were sequenced

The South Asian Genome
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using 26101 cycles (WGS) or 26100 cycles (WES) of incorpora-

tion and imaging. Imaging and analysis of the data was performed

using the SCS 2.6 and RTA 1.6 software packages from Illumina,

respectively. RTA analysis involved conversion of image data to

base-calling in real-time.

Sequence alignment
Default parameters were used for all data processing and

analysis stages unless otherwise specified. Each sample was

assessed for sequence quality on the basis of per-base and per-

sequence quality scores, GC content, duplication levels, kmer

content and sequence over-representation using FastQC version

0.10.0. Low-quality sequence was trimmed from reads using the

fastq_quality_trimmer component of the fastx toolkit version

0.0.13, removing bases from the 39 end of reads with a quality

score less than 15, and discarding reads which were shorter than

60 bp following quality trimming. Reads were also processed with

cutadapt to remove any residual sequencing adapters. Duplicate

reads resulting from both PCR and optical duplicates were

identified using Picard’s MarkDuplicates tool, using an optical

pixel duplicate parameter of 100.

Sequence reads were aligned to build 37 patch 5 of the human

genome sequence using bwa [7] version 0.6.1. Suffix array co-

ordinates of individual reads were determined with the ‘aln’

method, using unseeded alignments with gap opening and

extension penalties of 11 and 4 respectively, with 1 gap allowed

per alignment. SAM format alignments were generated using the

‘sampe’ method, reporting a single alignment for each read-pair,

and written as BAM formatted files by filtering the SAM format

alignments through SAMtools [43] version 0.1.9. BAM files are

available for download (European Nucleotide Archive: accession

number PRJEB5476).

Alignments were then sorted by co-ordinate and a BAM index

generated using SAMtools. A read-group header (RG) was added

to each bam file using Picard to allow differentiation of samples

amongst pooled data sets. Individual alignments were then merged

into pooled BAM format files. The alignments from the low-

coverage genomes were then split into individual chromosomes,

whereas the exome sequence alignments were left in a single

merged file.

Local re-alignments were carried out around indels in the

aligned reads using the GATK [8]. Sites requiring realignment

were identified with GATK’s RealignerTargetCreator, with

known indel loci provided from 1000 Genomes Phase I Indels

and the ‘Mills-Devine Gold Standard’ Indels (http://genome.

cshlp.org/content/21/6/830.long). The identified target loci were

passed to the GATK IndelRealigner, with realignments carried

out using the Smith-Waterman consensus determination model.

The LOD threshold for cleaning was reduced to 3.0 in the case of

the low-coverage genome samples, but left at the default of 5.0 for

exomic or high-coverage sequences. Finally the GATK Count-

Covariates tool was used to assess a number of covariates

(ReadGroupCovariate, QualityScoreCovariate, CycleCovariate

and dinucleotideCovariate), with known variant loci provided

from dbSNP. The resulting recalibration data was applied to

correct base quality scores using the TableRecalibration tool.

Variant calling, filtration and phasing
The GATK Unified Genotyper was used for the identification

of both SNPs and Indels, using dbSNP 135 for identification of

known variant loci. The Unified Genotyper was run using

‘discovery’ genotyping mode (reporting the most likely alternate

allele), and alternately using ‘SNP’ and ‘INDEL’ genotype

likelihood models. In the case of SNP identification, the default

minimum confidence threshold for calling (30) was applied with

exome sequences, but this was reduced to 4 for the low coverage

genomes. Exome sequences and high-coverage genomes were

analysed using a coverage threshold of 200, beyond which down-

sampling was applied to the reads, whereas low-coverage genomes

had a coverage threshold of 50 applied.

Filtering of SNP calls was carried out using the GATK

VariantRecalibrator using HapMap 3.3 as both truth and training

sets (prior = 15), the 1000 Genomes genotypes from the Omni 2.5

chip as a training set (prior = 12) and dbSNP 135 for the known

data set (prior = 8). Annotations used in the Gaussian mixture were

DP (Depth of reads passing quality thresholds), QD (Quality by

depth), Haplotype Score, Mapping quality rank sum test, read

position rank sum test and Inbreeding coefficient. Only variants

falling into the .99.9% truth-sensitivity tranche were retained for

analysis. Recalibration of genomic indels was carried out using a

similar process, but omitting the QD annotation from the

recalibration process, and using the Mills-Devine/1000G Indel

set for truth and training sets. Indel calls derived from exome

sequencing were manually filtered using thresholds of QD,2.0,

ReadPosRankSum,40.0, FS.200, InbreedingCoeffecient,2

0.8. Despite variant recalibration, a high proportion of indel calls

in the low-coverage WGS were false positive findings; we therefore

only retained low-coverage indel calls at sites that were also

identified as polymorphic in the high-coverage data.

Unphased likelihoods from variants called from low-coverage

genomes were prepared using the GATKs ProduceBeagleInput

tool, and haplotype inference carried out using Beagle version

3.3.2 [10], with 50 phasing iterations. The resulting phased

genotypes were incorporated with the vcf-format variants using

GATK’s BeagleOutputToVCF utility. SNPs were annotated using

the NGS-SNP [44] package while indel annotation was carried out

using ANNOVAR [45]. In both cases annotation was carried out

against an Ensembl v67 reference database. SNPs and indels were

considered novel if not present in dbSNP 135.

Accuracy of variant calling and imputation
We assessed the accuracy of SNP calling by the WGS-4x and

WES data using three datasets: i. 537K SNP genotypes measured

by the Illumina 610 microarray and ii. 252 SNPs identified by

WGS or WES submitted to replication genotyping by KASPar,

and iii. results from two samples analysed by both WGS-4x and

WGS-28x. The 252 SNPs submitted for direct genotyping were

specifically selected to be non-synonymous variants that were

either i. novel (N = 103) or ii. known but showing evidence for

stratification between South Asian and Europeans (FST.0.15,

N = 149). Direct genotyping was done amongst up to 2,638 South

Asians. Our strategy thus provides a robust assessment of calling

error rate and allele frequency estimates in conserved regions

identified as showing the greatest evidence for departure from

expectation. We defined sensitivity as the proportion of sites

polymorphic in the reference set that were identified as

polymorphic in the experimental (WGS-4x or WES) set. Positive

predictive value was defined as the proportion of sites identified as

polymorphic in the experimental (WGS-4x or WES) call set that

were confirmed to be polymorphic in the reference set.

We validated 35 indels using Sanger sequencing. The indel set

comprised 18 known indels (Broad Institute set of Mills Devine

and Thousand Genome indels) and 17 novel previously unde-

scribed variants. Validation was carried out amongst eight

individuals predicted to carry the indels by WGS-28x. PCR

primers were designed using BatchPrimer3 (v1.0) or the

Primer3Plus2 software (Table S13 in File S1). PCR was carried

out with reaction volumes of 25 ml on a Bio Rad Peltier Thermal
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Cycler with BIOTAQ DNA Polymerase (Bioline). PCR products

were purified for sequencing using MultiScreen PCRm96 filtration

plates (Millipore) and Sanger Sequenced on the ABI 3730 xl.

We carried out imputation amongst 6,557 South Asians

previously genotyped using the Illumina 610 microarray and not

included in the discovery experiment; this included the 8 South

Asians with WGS-28x data. Imputation was done for chromosome

22 using IMPUTE2 [46], with either phased WGS-4x or 1000

Genomes Project genotypes as the reference set. Concordance was

quantified as the correlation (r2) between predicted and observed

genotypes doses, and was assessed separately in comparison to

observed microarray and WGS-28x genotypes. Correlations were

calculated for each genomic site predicted to be polymorphic by

imputation, and results averaged by allele frequency (microarray)

or allele count (WGS-28x).

Population stratification and pathway analysis
To identify regions of the genome most closely associated with

South Asian ancestry, we determined values for Wright’s FST as a

measure of population differentiation that may arise from founder

effects, genetic drift or through selective pressure [13]. We carried

out pairwise comparisons of allele frequencies in South Asians

(determined by WGS-4x), with those reported amongst African,

East Asian and European populations (1000 Genomes Project). In

each pairwise comparison, analysis was limited to SNPs present in

both populations. We tested whether SNPs with high FST were

enriched for specific functional classes of variant, compared to

distribution expected under the null hypothesis (x2 test). We

carried out pathway analysis for genes containing SNPs with high

FST using Ingenuity Pathway Analysis [47]. For the enrichment

analyses of stratified variants, expectations under the null

hypothesis were generated by permutation testing. For each

phenotype, we generated 10,000 random sets of sentinel SNPs

matched to the published genome-wide association sentinel SNPs

based on allele frequency (+/20.02), gene proximity (+/210 kb)

and number of genes within 250 kb (+/22), and counted the

number of stratified SNPs falling within 500 kb of the random

sentinel SNP set. Similar results were obtained using a 1 MB

window.

Reference datasets
Where applicable, data sets for the analysis of the sequences

were those distributed with version 1.5 of the Genome Analysis

Toolkit (GATK) resource bundle. These include the Human

Genome Reference Consortium build 37 patch 5 release of the

Human genome, including unlocalised contigs and the rCRS MT

sequence, dbSNP build 135, HapMap 3.3 and the Broad Institute

curated Mills-Devine/1000 Genomes indel set. Comparison with

variants identified by the 1000 Genomes project was made against

the April 2012 Integrated Variant Set.

Supporting Information

Figure S1 Principal components analysis of samples
sequenced by WES or WGS-4x, compared to HapMap 2
(1A &1B) and HapMap 3 (1C and 1D) samples. Results are

shown for all South Asians in the LOLIPOP study (SA-All, red

circles), and for South Asians sequenced (IA-NGS, black dots).

(TIF)

Figure S2 Principal component analysis of genotype
data for i. UK South Asian samples sequenced by WES or
WGS in the current study, ii. HapMap CEU samples, iii.
HapMap CHB/JPT samples, and iv. Indian samples
studied by Reich et al (Nature 2009). The UK South Asian

samples studied coincide with the Reich samples collected in India,

confirming they are representative of non-migrant South Asians.

The Reich samples include Aonaga and Nyishi peoples, small

South Asian subpopulations from the north-east region of India,

with strong East Asian influence.

(TIF)

Figure S3 Principal component analysis of genotype
data for South Asian samples from the LOLIPOP study.
Samples selected for WES or WGS in the current study are

identified by red symbols.

(TIF)

Figure S4 Sequencing statistics for the WGS-4x (red)
and WES (blue) samples.

(TIF)

Figure S5 Enrichment of indels for variants multiples of
3 bases long in coding regions.

(TIF)

Figure S6 SNP call metrics in unphased (red) and
phased (blue) low-coverage WGS-4x data.

(TIF)

Figure S7 Allele frequencies in unphased (left panel)
and phased (right panel) WGS-4x data compared to
results from direct genotyping by microarray.

(TIF)

Figure S8 Difference in allele frequency between WGS-
4x and microarray data, before and after phasing.

(TIF)

Figure S9 Concordance of genotype calls from un-
phased WGS-4x, phased WGS-4x or WES, with calls
from microarray.

(TIF)

Figure S10 Allele frequency for 252 known and novel
variants identified by WGS-4x or WES, compared to
results from single variant genotyping in separate
sample of up to 2,638 South Asians.

(TIF)

Figure S11 Power for discovery of SNPs at differing
allele frequency by WGS-4x, by WES or in combination.
Calculations are based on observed sensitivity for SNP detention

of 91.9% by WGS-4x (N = 168) and 99.2% by WES (N = 147).

(TIF)

Figure S12 Proportion of autosomal SNPs identified by
WGS-4x that are in low LD (r2,0.5) with tag-SNPs on the
llumina 610 microarray.

(TIF)

Figure S13 Sharing of South Asian SNPs identified by
WGS-4x with 1000Genomes populations.

(TIF)

Figure S14 Allele frequencies for autosomal SNPs
identified by WGS-4x amongst South Asians (x-axis),
compared to 1000 Genomes populations (y-axis). Results

shown only for SNPs shared between the respective populations.

(TIF)

Figure S15 Distribution of FST values between South
Asians and the 1000 Genomes populations for autosomal
SNPs identified by WGS-4x.

(TIF)
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Figure S16 Manhattan plot showing FST values for
autosomal coding SNPs amongst South Asians compared
to Europeans on chromosomes 4–6. Regional plots are

shown for SNPs with FST.0.30. In the regional plots the SNP

with highest FST are identified by blue diamonds, while other

SNPs are colour coded according to their LD with the sentinel

(r2.0.8: red; r2.0.5 and #0.8: orange; r2.0.2 and #0.5: yellow).

(TIF)

Figure S17 Enrichment for SNP functional classes
across a range of allele frequencies for South Asian
specific SNPs (A) and for SNPs shared with other
populations (3B). Enrichment is calculated compared to null

hypothesis; P values are provided in Table S12.

(TIF)

Figure S18 Sharing of autosomal SNPs identified by
WGS-4x amongst ANI and ASI with 1000Genomes
populations.
(TIF)

Figure S19 Novel SNPs and Het-Hom ratio amongst ANI
and ASI South Asians.
(TIF)

Figure S20 Relationship between ANI-ASI gradient and
the number of novel autosomal SNPs identified by WGS-
4x. ASI-ANI gradient quantified by principal components analysis

(x axis) where lower PC indicates greater ASI content.

(TIF)

File S1 Table S1, Characteristics of participants. Table
S2, Per sample sequencing metrics for WGS and WES.
Results are mean (SD). Table S4, Results of indel validation
by Sanger sequencing. Sanger sequencing of 35 indel (17

previously unreported) amongst 8 individuals predicted to carry

the indels by WGS-28x. Sanger sequencing confirmed the

presence of indels at all sites called by whole genome sequencing.

For 33 of the 35 indels (94.3%) Sanger sequencing showed

identical sequence to that predicted by WGS-28x. Sanger

sequencing of the remaining two PCR amplicons confirmed

presence of a complex indel within 20 nucleotides of the originally

called indel; one fell within a repetitive region and the second was

difficult to analyse. Both these indels were novel. Table S5,
Functional class of SNPs identified by WGS-4x and WES.
Table S6, Functional class of indels identified by WGS-4x

and WES. Table S7, P values for enrichment of
autosomal coding and intergenic SNPs across the range
of FST between South Asians and the AFR, ASN or EUR
populations. Table S8, P values for enrichment of
functional classes amongst autosomal SNPs across the
range of FST between South Asians and 1000 Genomes
Project populations. Table S10, Pathway analysis (Inge-
nuity Pathway Analysis) of genes with potentially
functional SNPs stratified between South Asians and
Europeans (FST.0.10). Table S11, Enrichment for
stratified SNPs at genetic loci known to be associated
with respective phenotype in GWA studies. Observed: no

of stratified SNPs (Fst.0.10) within 500 kb of the reported sentinel

SNPs. Predicted: mean no of SNPs expected to fall within 500 kb

of the sentinel SNPs under null hypothesis. Expectation based on

permutation testing: 10,000 runs of SNP sets matched to the

stratified SNPs based on allele frequency and gene proximity, but

otherwise selected at random. Enrichment: observed/expected. P:

exact probability of the observed based on the distribution of

expected generated by permutation testing. Table S12, P values
for enrichment of functional classes amongst autosomal
SNPs across a range of allele frequencies. Table S13,
PCR primers for validation of indel calling by Sanger
sequencing.

(DOCX)

File S2 Table S3, Replication results for 252 SNPs
genotyped by single variant tests amongst up to 2,638
South Asians. Dataset: sequence data SNP was selected from.

AF: allele frequency. Table S9, Coding, splice and UTR
SNPs showing greatest stratification between South
Asians and Europeans. AF: allele frequency, SA: South

Asians, AFR; Africans, ASN: East Asians; EUR: Europeans.

(XLSX)
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