38 research outputs found

    Colonization of the Mediterranean Basin by the vector biting midge species Culicoides imicola: an old story

    Full text link
    Understanding the demographic history and genetic make-up of colonizing species is critical for inferring population sources and colonization routes. This is of main interest for designing accurate control measures in areas newly colonized by vector species of economically important pathogens. The biting midge Culicoides imicola is a major vector of Orbiviruses to livestock. Historically, the distribution of this species was limited to the Afrotropical region. Entomological surveys first revealed the presence of C. imicola in the south of the Mediterranean basin by the 1970's. Following recurrent reports of massive bluetongue outbreaks since the 1990s, the presence of the species was confirmed in northern areas. In this study, we addressed the chronology and processes of C. imicola colonization in the Mediterranean basin. We characterized the genetic structure of its populations across Mediterranean and African regions using both mitochondrial and nuclear markers, and combined phylogeographical analyses with population genetics and approximate Bayesian computation. We found a west/east genetic differentiation between populations, occurring both within Africa and within the Mediterranean basin. We demonstrated that three of these groups had experienced demographic expansions in the Pleistocene, probably because of climate changes during this period. Finally, we showed that C. imicola could have colonized the Mediterranean basin in the late Pleistocene or early Holocene through a single event of introduction; however we cannot exclude the hypothesis involving two routes of colonization. Thus, the recent bluetongue outbreaks are not linked to C. imicola colonization event, but rather to biological changes in the vector or the virus

    Detecting Wahlund effects together with amplification problems : cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania

    No full text
    Population genetics is a convenient tool to study the population biology of non-model and hard to sample species. This is particularly true for parasites and vectors. Heterozygote deficits and/or linkage disequilibrium often occur in such studies and detecting the origin of those (Wahlund effect, reproductive system or amplification problems) is uneasy. We used new tools (correlation between the number of times a locus is found in significant linkage disequilibrium and its genetic diversity, correlations between Wright's F-IS and F-ST, F-IS and number of missing data, F-IT and allele size and standard errors comparisons) for the first time on a real data set of tsetse flies, a vector of dangerous diseases to humans and domestic animals in sub-Saharan Africa. With these new tools, and cleaning data from null allele, temporal heterogeneity and short allele dominance effects, we unveiled the coexistence of two highly divergent cryptic clades in the same sites. These results are in line with other studies suggesting that the biodiversity of many taxa still largely remain undescribed, in particular pathogenic agents and their vectors. Our results also advocate that including individuals from different cohorts tends to bias subdivision measures and that keeping loci with short allele dominance and/or too frequent missing data seriously jeopardize parameter's estimations. Finally, separated analyses of the two clades suggest very small tsetse densities and relatively large dispersal

    Cryptic microsporidian parasites differentially affect invasive and native Artemia spp.

    No full text
    International audienceWe investigated the host specificity of two cryptic microsporidian species (Anostracospora rigaudi and Enterocytospora artemiae) infecting invasive (Artemia franciscana) and native (Artemia parthenogenetica) hosts in sympatry. Anostracospora rigaudi was on average four times more prevalent in the native host, whereas E. artemiae was three times more prevalent in the invasive host. Infection with An. rigaudi strongly reduced female reproduction in both host species, whereas infection with E. artemiae had weaker effects on female reproduction. We contrasted microsporidian prevalence in native A. franciscana populations (New World) and in both invaded and non-invaded Artemia populations (Old World). At a community level, microsporidian prevalence was twice as high in native compared with invasive hosts, due to the contrasting host-specificity of An. rigaudi and E. artemiae. At a higher biogeographical level, microsporidian prevalence in A. franciscana did not differ between the invaded populations and the native populations used for the introduction. Although E. artemiae was the only species found both in New and Old World populations, no evidence of its co-introduction with the invasive host was found in our experimental and phylogeographic tests. These results suggest that the success of A. franciscana invasion is probably due to a lower susceptibility to virulent microsporidian parasites rather than to decreased microsporidian prevalence compared with A. parthenogenetica or to lower microsporidian virulence in introduced areas. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc

    Evolution of Gene Expression during a Transition from Environmental to Genetic Sex Determination

    Get PDF
    Genetic sex determination (GSD) can evolve from environmental sex determination (ESD) via an intermediate state in which both coexist in the same population. Such mixed populations are found in the crustacean Daphnia magna, where non-male producers (NMP, genetically determined females) coexist with male producers (MP), in which male production is environmentally inducible and can also artificially be triggered by exposure to juvenile hormone. This makes Daphnia magna a rare model species for the study of evolutionary transitions from ESD to GSD. Although the chromosomal location of the NMP-determining mutation has been mapped, the actual genes and pathways involved in the evolution of GSD from ESD remain unknown. Here, we present a transcriptomic analysis of MP and NMP females under control (female producing) and under hormone exposure conditions. We found similar to 100 differentially expressed genes between MP and NMP under control conditions. Genes in the NMP-determining chromosome region were especially likely to show such constitutive expression differences. Hormone exposure led to expression changes of an additional similar to 100 (MP) to similar to 600 (NMP) genes, with an almost systematic upregulation of those genes in NMP. These observations suggest that the NMP phenotype is not determined by a simple "loss-of-function" mutation. Rather, homeostasis of female offspring production under hormone exposure appears to be an active state, tightly regulated by complex mechanisms involving many genes. In a broader view, this illustrates that the evolution of GSD, while potentially initiated by a single mutation, likely leads to secondary integration involving many genes and pathways

    Experimental Evidence for the Negative Effects of Self-Fertilization on the Adaptive Potential of Populations

    No full text
    International audienceSelf-fertilization is widely believed to be an ''evolu-tionary dead end'' [1, 2], increasing the risk of extinction [3] and the accumulation of deleterious mutations in genomes [4]. Strikingly, while the failure to adapt has always been central to the dead-end hypothesis [1, 2], there are no quantitative genetic selection experiments comparing the response to positive selection in selfing versus outcrossing populations. Here we studied the response to selection on a morphological trait in laboratory populations of a hermaphroditic, self-fertile snail under either selfing or outcrossing. We applied both treatments to two types of populations: some having undergone frequent selfing and purged a substantial fraction of their mutation load in their recent history [5], and others continuously maintained under outcrossing. Populations with a history of outcrossing respond faster to selection than those that have experienced selfing. In addition, when self-fertilization occurs during selection, the response is initially fast but then rapidly slows, while out-crossing populations maintain their response throughout the experiment. This occurs irrespective of past selfing history, suggesting that high levels of inbreeding depression, contrary to expectation [6], do not set strong limits to the response to selection under inbreeding, at least at the timescale of a few generations. More surprisingly, pheno-typic variance is consistently higher under selfing, although it quickly becomes less responsive to selection. This implies an increase in non-heritable variance, hence a breakdown of developmental canalization [7] under selfing. Our findings provide the first empirical support of the short-term positive and long-term negative effects of selfing on adaptive potential

    Aplexa marmorata microsatellite genotypes (Genepop)

    No full text
    Aplexa marmorata microsatellite genotypes as genepop format. For more information on sampling locations see the corresponding habitat characteristics data file

    Data from: Bioinvasion triggers rapid evolution of life-histories in freshwater snails

    No full text
    Biological invasions offer interesting situations to observe how novel interactions between closely related, formerly allopatric species may trigger phenotypic evolution in situ. Assuming that successful invaders are usually filtered to be competitively dominant, invasive and native species may follow different trajectories. Natives may evolve traits that minimize the negative impact of competition, while trait shifts in invasives should mostly reflect expansion dynamics, through selection for colonization ability and transiently enhanced mutation load at the colonization front. These ideas were tested through a large-scale common-garden experiment measuring life-history traits in two closely related snail species, one invasive and one native, co-occurring in a network of freshwater ponds in Guadeloupe. We looked for evidence of recent evolution by comparing uninvaded or recently invaded with long-invaded sites. The native species adopted a life history favoring rapid population growth (i.e. increased fecundity, earlier reproduction and increased juvenile survival) that may increase its prospects of coexistence with the more competitive invader. We discuss why these effects are more likely to result from genetic change than from maternal effects. The invader exhibited slightly decreased overall performances in recently colonized sites, consistent with a moderate expansion load resulting from local founder effects. Our study highlights a rare example of rapid life-history evolution following invasion

    Bioinvasion Triggers Rapid Evolution of Life Histories in Freshwater Snails

    No full text
    International audienceBiological invasions offer interesting situations for observing how novel interactions between closely related, formerly allopatric species may trigger phenotypic evolution in situ. Assuming that successful invaders are usually filtered to be competitively dominant, invasive and native species may follow different trajectories. Natives may evolve traits that minimize the negative impact of competition, while trait shifts in invasives should mostly reflect expansion dynamics, through selection for colonization ability and transiently enhanced mutation load at the colonization front. These ideas were tested through a large-scale common-garden experiment measuring life-history traits in two closely related snail species, one invasive and one native, co-occurring in a network of freshwater ponds in Guadeloupe. We looked for evidence of recent evolution by comparing uninvaded or recently invaded sites with long-invaded ones. The native species adopted a life history favoring rapid population growth (i.e., increased fecundity, earlier reproduction, and increased juvenile survival) that may increase its prospects of coexistence with the more competitive invader. We discuss why these effects are more likely to result from genetic change than from maternal effects. The invader exhibited slightly decreased overall performances in recently colonized sites, consistent with a moderate expansion load resulting from local founder effects. Our study highlights a rare example of rapid life-history evolution following invasion

    Sexual selection and inbreeding: Two efficient ways to limit the accumulation of deleterious mutations

    Get PDF
    International audienceTheory and empirical data showed that two processes can boost selection against deleterious mutations, thus facilitating the purging of the mutation load: inbreeding, by exposing recessive deleterious alleles to selection in homozygous form, and sexual selection, by enhancing the relative reproductive success of males with small mutation loads. These processes tend to be mutually exclusive because sexual selection is reduced under mating systems that promote inbreeding, such as self-fertilization in hermaphrodites. We estimated the relative efficiency of inbreeding and sexual selection at purging the genetic load, using 50 generations of experimental evolution, in a hermaphroditic snail (Physa acuta). To this end, we generated lines that were exposed to various intensities of inbreeding, sexual selection (on the male function), and nonsexual selection (on the female function). We measured how these regimes affected the mutation load, quantified through the survival of outcrossed and selfed juveniles. We found that juvenile survival strongly decreased in outbred lines with reduced male selection, but not when female selection was relaxed, showing that male-specific sexual selection does purge deleterious mutations. However, in lines exposed to inbreeding, where sexual selection was also relaxed, survival did not decrease, and even increased for self-fertilized juveniles, showing that purging through inbreeding can compensate for the absence of sexual selection. Our results point to the further question of whether a mixed strategy combining the advantages of both mechanisms of genetic purging could be evolutionary stable

    Long-term prevalence data reveals spillover dynamics in a multi-host (Artemia), multi-parasite (Microsporidia) community

    No full text
    International audienceIn the study of multi-host parasites, it is often found that host species contribute asymmetrically to parasite transmission. Yet in natural populations, identifying which hosts contribute to parasite transmission and maintenance is a recurring challenge. Here, we approach this issue by taking advantage of natural variation in the composition of a host community. We studied the brine shrimps Artemia franciscana and Artemia parthenogenetica and their microsporidian parasites Anostracospora rigaudi and Enterocytospora artemiae. Previous laboratory experiments had shown that each host can transmit both parasites, but could not predict their actual contributions to the parasites’ maintenance in the field. To resolve this, we gathered long-term prevalence data from a metacommunity of these species. Metacommunity patches could contain either or both of the Artemia host species, so that the presence of the hosts could be linked directly to the persistence of the parasites. First, we show that the microsporidian A. rigaudi is a spillover parasite: it was unable to persist in the absence of its maintenance host A. parthenogenetica. This result was particularly striking, as A. rigaudi displayed both high prevalence (in the field) and high infectivity (when tested in the laboratory) in both hosts. Moreover, the seasonal presence of A. parthenogenetica imposed seasonality on the rate of spillover, causing cyclical pseudo-endemics in the spillover host A. franciscana. Second, while our prevalence data was sufficient to identify E. artemiae as either a spillover or a facultative multi-host parasite, we could not distinguish between the two possibilities. This study supports the importance of studying the community context of multi-host parasites, and demonstrates that in appropriate multi-host systems, sampling across a range of conditions and host communities can lead to clear conclusions about the drivers of parasite persistence
    corecore