104 research outputs found
An integral equation approach to effective interactions between polymers in solution
We use the thread model for linear chains of interacting monomers, and the
``polymer reference interaction site model'' (PRISM) formalism to determine the
monomer-monomer pair correlation function for dilute and
semi-dilute polymer solutions, over a range of temperatures from very high
(where the chains behave as self-avoiding walks) to below the
temperature, where phase separation sets in. An inversion procedure, based on
the HNC integral equation, is used to extract the effective pair potential
between ``average'' monomers on different chains. An accurate relation between
, [the pair correlation function between the polymer
centers of mass (c.m.)], and the intramolecular form factors is then used to
determine , and subsequently extract the effective c.m.-c.m. pair
potential by a similar inversion procedure. depends on
temperature and polymer concentration, and the predicted variations are in
reasonable agreement with recent simulation data, except at very high
temperatures, and below the temperature.Comment: 13 pages, 13 figures, revtex ; revised versio
Coherent States for Black Holes
We determine coherent states peaked at classical space-time of the
Schwarzschild black hole in the frame-work of canonical quantisation of general
relativity. The information about the horizon is naturally encoded in the phase
space variables, and the perturbative quantum fluctuations around the classical
geometry depend on the distance from the horizon. For small black holes, space
near the vicinity of the singularity appears discrete with the singular point
excluded from the spectrum.Comment: 48 pages, 18+1 figures, some modifications, references adde
National CO\u3csub\u3e2\u3c/sub\u3e budgets (2015-2020) inferred from atmospheric CO\u3csub\u3e2\u3c/sub\u3e observations in support of the global stocktake
Accurate accounting of emissions and removals of CO2 is critical for the planning and verification of emission reduction targets in support of the Paris Agreement. Here, we present a pilot dataset of country-specific net carbon exchange (NCE; fossil plus terrestrial ecosystem fluxes) and terrestrial carbon stock changes aimed at informing countries\u27 carbon budgets. These estimates are based on top-down NCE outputs from the v10 Orbiting Carbon Observatory (OCO-2) modeling intercomparison project (MIP), wherein an ensemble of inverse modeling groups conducted standardized experiments assimilating OCO-2 column-Averaged dry-Air mole fraction (XCO2) retrievals (ACOS v10), in situ CO2 measurements or combinations of these data. The v10 OCO-2 MIP NCE estimates are combined with bottom-up estimates of fossil fuel emissions and lateral carbon fluxes to estimate changes in terrestrial carbon stocks, which are impacted by anthropogenic and natural drivers. These flux and stock change estimates are reported annually (2015-2020) as both a global 1gg×g1g gridded dataset and a country-level dataset and are available for download from the Committee on Earth Observation Satellites\u27 (CEOS) website: 10.48588/npf6-sw92 . Across the v10 OCO-2 MIP experiments, we obtain increases in the ensemble median terrestrial carbon stocks of 3.29-4.58gPgCO2yr-1 (0.90-1.25gPgCyr-1). This is a result of broad increases in terrestrial carbon stocks across the northern extratropics, while the tropics generally have stock losses but with considerable regional variability and differences between v10 OCO-2 MIP experiments. We discuss the state of the science for tracking emissions and removals using top-down methods, including current limitations and future developments towards top-down monitoring and verification systems
Deformation Quantization of Superintegrable Systems and Nambu Mechanics
Phase Space is the framework best suited for quantizing superintegrable
systems, naturally preserving the symmetry algebras of the respective
hamiltonian invariants. The power and simplicity of the method is fully
illustrated through new applications to nonlinear sigma models, specifically
for de Sitter N-spheres and Chiral Models, where the symmetric quantum
hamiltonians amount to compact and elegant expressions. Additional power and
elegance is provided by the use of Nambu Brackets to incorporate the extra
invariants of superintegrable models. Some new classical results are given for
these brackets, and their quantization is successfully compared to that of
Moyal, validating Nambu's original proposal.Comment: LateX2e, 18 page
Exploring interaction differences in Microblogging Word of Mouth between entrepreneurial and conventional service providers
In this study, we explore the interaction network properties of Microblogging Word of Mouth (MWOM), and how it is utilized by two different types of service providers, namely entrepreneurial and conventional. We use social network analysis, involving network metrics, sentiment, content and semantic analysis of real time data collected via Twitter, to compare two providers in terms of how they leverage MWOM in their social interactions. Results demonstrate that MWOM is utilized in an inherently different manner by an entrepreneurial provider, compared to a conventional one. Based on the findings, the study identifies distinctions between the entrepreneurial and conventional service providers in how they utilize MWOM on social media. Specifically, the entrepreneurial provider capitalizes on the interactive nature and dialogic capabilities of Twitter; whereas the conventional provider mostly relies on focal information sharing, thus neglecting the network members’ content creation and relationship building capability of social media networks. The study has significant implications as it provides key insights and lessons in terms of how companies should respond to emerging digital opportunities in their online social interactions
Systematic Review of Medicine-Related Problems in Adult Patients with Atrial Fibrillation on Direct Oral Anticoagulants
New oral anticoagulant agents continue to emerge on the market and their safety requires assessment to provide evidence of their suitability for clinical use. There-fore, we searched standard databases to summarize the English language literature on medicine-related problems (MRPs) of direct oral anticoagulants DOACs (dabigtran, rivaroxban, apixban, and edoxban) in the treatment of adults with atri-al fibrillation. Electronic databases including Medline, Embase, International Pharmaceutical Abstract (IPA), Scopus, CINAHL, the Web of Science and Cochrane were searched from 2008 through 2016 for original articles. Studies pub-lished in English reporting MRPs of DOACs in adult patients with AF were in-cluded. Seventeen studies were identified using standardized protocols, and two reviewers serially abstracted data from each article. Most articles were inconclusive on major safety end points including major bleeding. Data on major safety end points were combined with efficacy. Most studies inconsistently reported adverse drug reactions and not adverse events or medication error, and no definitions were consistent across studies. Some harmful drug effects were not assessed in studies and may have been overlooked. Little evidence is provided on MRPs of DOACs in patients with AF and, therefore, further studies are needed to establish the safety of DOACs in real-life clinical practice
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
First Sagittarius A* Event Horizon Telescope Results. VII. Polarization of the Ring
The Event Horizon Telescope observed the horizon-scale synchrotron emission region around the Galactic center supermassive black hole, Sagittarius A* (Sgr A*), in 2017. These observations revealed a bright, thick ring morphology with a diameter of 51.8 ± 2.3 μas and modest azimuthal brightness asymmetry, consistent with the expected appearance of a black hole with mass M ≈ 4 × 106 M ⊙. From these observations, we present the first resolved linear and circular polarimetric images of Sgr A*. The linear polarization images demonstrate that the emission ring is highly polarized, exhibiting a prominent spiral electric vector polarization angle pattern with a peak fractional polarization of ∼40% in the western portion of the ring. The circular polarization images feature a modestly (∼5%–10%) polarized dipole structure along the emission ring, with negative circular polarization in the western region and positive circular polarization in the eastern region, although our methods exhibit stronger disagreement than for linear polarization. We analyze the data using multiple independent imaging and modeling methods, each of which is validated using a standardized suite of synthetic data sets. While the detailed spatial distribution of the linear polarization along the ring remains uncertain owing to the intrinsic variability of the source, the spiraling polarization structure is robust to methodological choices. The degree and orientation of the linear polarization provide stringent constraints for the black hole and its surrounding magnetic fields, which we discuss in an accompanying publication
- …