274 research outputs found
The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition
We analytically derive the spectrum of gravitational waves due to
magneto-hydrodynamical turbulence generated by bubble collisions in a
first-order phase transition. In contrast to previous studies, we take into
account the fact that turbulence and magnetic fields act as sources of
gravitational waves for many Hubble times after the phase transition is
completed. This modifies the gravitational wave spectrum at large scales. We
also model the initial stirring phase preceding the Kolmogorov cascade, while
earlier works assume that the Kolmogorov spectrum sets in instantaneously. The
continuity in time of the source is relevant for a correct determination of the
peak position of the gravitational wave spectrum. We discuss how the results
depend on assumptions about the unequal-time correlation of the source and
motivate a realistic choice for it. Our treatment gives a similar peak
frequency as previous analyses but the amplitude of the signal is reduced due
to the use of a more realistic power spectrum for the magneto-hydrodynamical
turbulence. For a strongly first-order electroweak phase transition, the signal
is observable with the space interferometer LISA.Comment: 46 pages, 17 figures. Replaced with revised version accepted for
publication in JCA
A review of the decoherent histories approach to the arrival time problem in quantum theory
We review recent progress in understanding the arrival time problem in
quantum mechanics, from the point of view of the decoherent histories approach
to quantum theory. We begin by discussing the arrival time problem, focussing
in particular on the role of the probability current in the expected classical
solution. After a brief introduction to decoherent histories we review the use
of complex potentials in the construction of appropriate class operators. We
then discuss the arrival time problem for a particle coupled to an environment,
and review how the arrival time probability can be expressed in terms of a POVM
in this case. We turn finally to the question of decoherence of the
corresponding histories, and we show that this can be achieved for simple
states in the case of a free particle, and for general states for a particle
coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding
Symmetric coupling of four spin-1/2 systems
We address the non-binary coupling of identical angular momenta based upon
the representation theory for the symmetric group. A correspondence is pointed
out between the complete set of commuting operators and the
reference-frame-free subsystems. We provide a detailed analysis of the coupling
of three and four spin-1/2 systems and discuss a symmetric coupling of four
spin-1/2 systems.Comment: 20 pages, no figure
Order in glassy systems
A directly measurable correlation length may be defined for systems having a
two-step relaxation, based on the geometric properties of density profile that
remains after averaging out the fast motion. We argue that the length diverges
if and when the slow timescale diverges, whatever the microscopic mechanism at
the origin of the slowing down. Measuring the length amounts to determining
explicitly the complexity from the observed particle configurations. One may
compute in the same way the Renyi complexities K_q, their relative behavior for
different q characterizes the mechanism underlying the transition. In
particular, the 'Random First Order' scenario predicts that in the glass phase
K_q=0 for q>x, and K_q>0 for q<x, with x the Parisi parameter. The hypothesis
of a nonequilibrium effective temperature may also be directly tested directly
from configurations.Comment: Typos corrected, clarifications adde
Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel
We evaluate the planar two-loop QCD diagrams contributing to the leading
color coefficient of the heavy-quark pair production cross section, in the
quark-antiquark annihilation channel. We obtain the leading color coefficient
in an analytic form, in terms of one- and two-dimensional harmonic
polylogarithms of maximal weight 4. The result is valid for arbitrary values of
the Mandelstam invariants s and t, and of the heavy-quark mass m. Our findings
agree with previous analytic results in the small-mass limit and numerical
results for the exact amplitude.Comment: 30 pages, 5 figures. Version accepted by JHE
Gluon mass generation in the PT-BFM scheme
In this article we study the general structure and special properties of the
Schwinger-Dyson equation for the gluon propagator constructed with the pinch
technique, together with the question of how to obtain infrared finite
solutions, associated with the generation of an effective gluon mass.
Exploiting the known all-order correspondence between the pinch technique and
the background field method, we demonstrate that, contrary to the standard
formulation, the non-perturbative gluon self-energy is transverse
order-by-order in the dressed loop expansion, and separately for gluonic and
ghost contributions. We next present a comprehensive review of several subtle
issues relevant to the search of infrared finite solutions, paying particular
attention to the role of the seagull graph in enforcing transversality, the
necessity of introducing massless poles in the three-gluon vertex, and the
incorporation of the correct renormalization group properties. In addition, we
present a method for regulating the seagull-type contributions based on
dimensional regularization; its applicability depends crucially on the
asymptotic behavior of the solutions in the deep ultraviolet, and in particular
on the anomalous dimension of the dynamically generated gluon mass. A
linearized version of the truncated Schwinger-Dyson equation is derived, using
a vertex that satisfies the required Ward identity and contains massless poles
belonging to different Lorentz structures. The resulting integral equation is
then solved numerically, the infrared and ultraviolet properties of the
obtained solutions are examined in detail, and the allowed range for the
effective gluon mass is determined. Various open questions and possible
connections with different approaches in the literature are discussed.Comment: 54 pages, 24 figure
Protection and Identification of Stateless Persons Through EU Law
A number of recent studies confirm that statelessness is a widespread phenomenon in the EU, which is not receiving adequate attention. The lack of well-functioning statelessness determination procedures is at the root of many problems associated with statelessness in the EU. These are, in particular, the inadequate protection of stateless persons and deficiencies in the prevention and reduction of statelessness. This paper argues in favour of common EU action on the identification and protection of stateless persons by analyzing the EU competence to pass relevant legislation, and explaining the desirability for such legislation
Super-Hubble de Sitter Fluctuations and the Dynamical RG
Perturbative corrections to correlation functions for interacting theories in
de Sitter spacetime often grow secularly with time, due to the properties of
fluctuations on super-Hubble scales. This growth can lead to a breakdown of
perturbation theory at late times. We argue that Dynamical Renormalization
Group (DRG) techniques provide a convenient framework for interpreting and
resumming these secularly growing terms. In the case of a massless scalar field
in de Sitter with quartic self-interaction, the resummed result is also less
singular in the infrared, in precisely the manner expected if a dynamical mass
is generated. We compare this improved infrared behavior with large-N
expansions when applicable.Comment: 33 pages, 4 figure
The Neutrino Mass Matrix - New Developments
With the recent experimental advance in our precise knowledge of the neutrino
oscillation parameters, the correct form of the 3 X 3 neutrino mass matrix is
now approximately known. I discuss how this may be obtained from symmetry
principles, using as examples the finite groups A_4 and Z_4, predicting as a
result three nearly degenerate Majorana neutrino masses in the 0.2 eV range.Comment: 14 pages, talk at BEYOND 200
Numerical loop quantum cosmology: an overview
A brief review of various numerical techniques used in loop quantum cosmology
and results is presented. These include the way extensive numerical simulations
shed insights on the resolution of classical singularities, resulting in the
key prediction of the bounce at the Planck scale in different models, and the
numerical methods used to analyze the properties of the quantum difference
operator and the von Neumann stability issues. Using the quantization of a
massless scalar field in an isotropic spacetime as a template, an attempt is
made to highlight the complementarity of different methods to gain
understanding of the new physics emerging from the quantum theory. Open
directions which need to be explored with more refined numerical methods are
discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and
Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
- …
