11 research outputs found

    The Molecular Clouds of M31

    Get PDF
    © 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Deep interferometric observations of CO and dust continuum emission are obtained with the Sub-Millimeter Array (SMA) at 230 GHz to investigate the physical nature of the giant molecular cloud (GMC) population in the Andromeda galaxy (M31). We use J = 2-1 12^{12}CO and 13^{13}CO emission to derive the masses, sizes and velocity dispersions of 162 spatially resolved GMCs. We perform a detailed study of a subset of 117 GMCs that exhibit simple, single component line profile shapes. Examining the Larson scaling relations for these GMCs we find: 1- a highly correlated mass-size relation in both 12^{12}CO and 13^{13}CO emission; 2- a weakly correlated 12^{12}CO linewidth-size (LWS) relation along with a weaker, almost non-existent, 13^{13}CO LWS relation, suggesting a possible dependence of the LWS relation on spatial scale; and 3-that only 43\% of these GMCs are gravitationally bound. We identify two classes of GMCs based on the strength and extent of their 13^{13}CO emission. Examination of the Larson relations finds that both classes are individually characterized by strong 12^{12}CO mass-size relations and much weaker 12^{12}CO and 13^{13}CO LWS relations. The majority (73\%) of strong 13^{13}CO emitting GMCs are found to be gravitationally bound. However, only 25\% of the weak 13^{13}CO emitting GMCs are bound. The resulting breakdown in the Larson relations in the weak 13^{13}CO emitting population decouples the mass-size and LWS relations demonstrating that independent physical causes are required to understand the origin of each. Finally, in nearly every aspect, the physical properties of the M31 GMCs are found to be very similar to those of local Milky Way clouds.Peer reviewe

    The distribution of interstellar dust in CALIFA edge-on galaxies via oligochromatic radiative transfer fitting

    Get PDF
    We investigate the amount and spatial distribution of interstellar dust in edge-on spiral galaxies, using detailed radiative transfer modeling of a homogeneous sample of 12 galaxies selected from the CALIFA survey. Our automated fitting routine, FitSKIRT, was first validated against artificial data. This is done by simultaneously reproducing the SDSS gg-, rr-, ii- and zz-band observations of a toy model in order to combine the information present in the different bands. We show that this combined, oligochromatic fitting, has clear advantages over standard monochromatic fitting especially regarding constraints on the dust properties. We model all galaxies in our sample using a three-component model, consisting of a double exponential disc to describe the stellar and dust discs and using a S\'ersic profile to describe the central bulge. The full model contains 19 free parameters, and we are able to constrain all these parameters to a satisfactory level of accuracy without human intervention or strong boundary conditions. Apart from two galaxies, the entire sample can be accurately reproduced by our model. We find that the dust disc is about 75% more extended but only half as high as the stellar disc. The average face-on optical depth in the V-band is 0.760.76 and the spread of 0.600.60 within our sample is quite substantial, which indicates that some spiral galaxies are relatively opaque even when seen face-on.Comment: 18 pages, 6 figures, 4 tables, Accepted for publication in MNRA

    The dust-star interplay in late-type galaxies at z < 0.5: Forecasts for the JWST

    Get PDF
    Context. In recent years, significant growth in the amount of data available to astronomers has opened up the possibility for extensive multi-wavelength approaches. In the field of galaxy evolution, such approaches have uncovered fundamental correlations, linking the dust component of a galaxy to its star formation rate (SFR). Despite these achievements, the relation between the SFR and the dust is still challenging, with uncertainties related to the physical mechanisms linking the two. Aims: In this paper, we re-examine these correlations, paying specific attention to the intrinsic properties of the dust. Our goal is to investigate the origin of the observed scatter in low-redshift galaxies, and the ability of the James Webb Space Telescope (JWST) to explore such relations in the early Universe. Methods: We defined a sample of about 800 normal star-forming galaxies with photometries in the range of 0.15 Results: Dust luminosity (Ld) and SFR show a strong correlation, but for SFR ⊙ yr−1, the correlation scatter increases dramatically. We show that selection based on the fraction of ultraviolet (UV) emission absorbed by dust, that is, the UV extinction, greatly reduces the data dispersion. Dust masses (Md) and SFR show a weaker correlation, with a larger scatter due to the interstellar radiation field produced by stars during late evolutionary stages, which shifts the positions of the galaxies in the dust mass-SFR plane. At z = 2, more than 60% of the galaxies in the sample are detected with F770, F1000, F1280, F1500, and F1800. At higher redshifts, the detection decreases, and only 45% of z = 8 galaxies are detected with two filters. Reproducing the expected sensitivity of the Cosmic Evolution Early Release Science Survey and classifying galaxies according to their SFR and stellar mass (M*), we investigated the MIRI detection rate as a function of the physical properties of the galaxies. Fifty percent of the objects with SFR ∼ 1 M⊙ yr−1 at z = 6 are detected with F770, which decreases to 20% at z = 8. For such galaxies, only 5% of the subsample will be detected at 5σ with F770 and F1000 at z = 8, and only 10% with F770, F1000, and F1280 at z = 6. For galaxies with higher SFR, detection with these three filters will be possible up to z = 6 in ∼60% of the subsample. Conclusions: The link between dust and star formation is complex, and many aspects remain to be fully understood. The scatter between SFR and dust mass, and SFR and luminosity, decreases significantly when the analysis includes dust properties. In this context, the JWST will revolutionise the field, allowing investigation of the dust-star interplay well within the epoch of reionisation

    The Herschel Virgo Cluster Survey XIX. Physical properties of low luminosity FIR sources at z < 0.5

    Get PDF
    Context. The star formation rate is a crucial parameter for the investigation galaxy evolution. At low redshift the cosmic star formation rate density declines smoothly, and massive active galaxies become passive, reducing their star formation activity. This implies that the bulk of the star formation rate density at low redshift is mainly driven by low mass objects. Aims. We investigate the properties of a sample of low luminosity far-infrared sources selected at 250 μm. We have collected data from ultraviolet to far-infrared in order to perform a multiwavelengths analysis. The main goal is to investigate the correlation between star formation rate, stellar mass, and dust mass for a galaxy population with a wide range in dust content and stellar mass, including the low mass regime that most probably dominates the star formation rate density at low redshift. Methods. We define a main sample of ~800 sources with full spectral energy distribution coverage between 0.15 <λ< 500 μm and an extended sample with ~5000 sources in which we remove the constraints on the ultraviolet and near-infrared bands. We analyze both samples with two different spectral energy distribution fitting methods: MAGPHYS and CIGALE, which interpret a galaxy spectral energy distribution as a combination of different simple stellar population libraries and dust emission templates. Results. In the star formation rate versus stellar mass plane our samples occupy a region included between local spirals and higher redshift star forming galaxies. These galaxies represent the population that at z 3 × 1010 M⊙) do not lie on the main sequence, but show a small offset as a consequence of the decreased star formation. Low mass galaxies (M∗< 1 × 1010 M⊙) settle in the main sequence with star formation rate and stellar mass consistent with local spirals. Conclusions. Deep Herschel data allow the identification of a mixed galaxy population with galaxies still in an assembly phase or galaxies at the beginning of their passive evolution. We find that the dust luminosity is the parameter that allow us to discriminate between these two galaxy populations. The median spectral energy distribution shows that even at low star formation rate our galaxy sample has a higher mid-infrared emission than previously predicted

    The new galaxy evolution paradigm revealed by the Herschel surveys

    Get PDF
    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys, which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a a single Galaxy Sequence (GS) rather than a star-forming ‘main sequence’ and a separate region of ‘passive’ or ‘red-and-dead’ galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically-red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 < z < 0.4, we show that the galaxies responsible for the rapid low-redshift evolution have high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations— they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population

    An efficient graph-based peer selection method for financial statements

    No full text
    Comparing companies can be useful for various purposes. Despite the widespread use of industry classification systems as a peer selection standard, these have been criticized for various reasons. Financial statements, however, offer a promising alternative to such classification systems. They are standardized, widely available, and offer deep insights into the nature of the company. In this paper, we present a graph distance metric for financial statements using the earth mover's distance. When using the distance metric on real-world tasks such as peer identification and industry classification, it shows promising results in terms of accuracy and computational efficiency

    Unleashing the Potential of Dust Emission as a Window onto Galaxy Evolution

    Get PDF
    International audienceWe present the severe, systematic uncertainties currently facing our understanding of dust emission, which stymie our ability to truly exploit dust as a tool for studying galaxy evolution. We propose a program of study to tackle these uncertainties, describe the necessary facilities, and discuss the potential science gains that would result

    The First Maps of κd – the Dust Mass Absorption Coefficient – in Nearby Galaxies, with DustPedia

    Get PDF
    Accepted for publication in Monthly Notices of the Royal Astronomical SocietyInternational audienceThe dust mass absorption coefficient, κd\kappa_{d}, is the conversion function used to infer physical dust masses from observations of dust emission. However, it is notoriously poorly constrained, and it is highly uncertain how it varies, either between or within galaxies. Here we present the results of a proof-of concept study, using the DustPedia data for two nearby face-on spiral galaxies M74 (NGC 628) and M83 (NGC 5236), to create the first ever maps of κd\kappa_{d} in galaxies. We determine κd\kappa_{d} using an empirical method that exploits the fact that the dust-to-metals ratio of the interstellar medium is constrained by direct measurements of the depletion of gas-phase metals. We apply this method pixel-by-pixel within M74 and M83, to create maps of κd\kappa_{d}. We also demonstrate a novel method of producing metallicity maps for galaxies with irregularly-sampled measurements, using the machine learning technique of Gaussian process regression. We find strong evidence for significant variation in κd\kappa_{d}. We find values of κd\kappa_{d} at 500 μ\mum spanning the range 0.11-0.25 m2 kg−1{\rm m^{2}\,kg^{-1}} in M74, and 0.15-0.80 m2 kg−1{\rm m^{2}\,kg^{-1}} in M83. Surprisingly, we find that κd\kappa_{d} shows a distinct inverse correlation with the local density of the interstellar medium. This inverse correlation is the opposite of what is predicted by standard dust models. However, we find this relationship to be robust against a large range of changes to our method - only the adoption of unphysical or highly unusual assumptions would be able to suppress it
    corecore