28 research outputs found

    Spatiotemporal sine-Wiener Bounded Noise and its effect on Ginzburg-Landau model

    Full text link
    In this work, we introduce a kind of spatiotemporal bounded noise derived by the sine-Wiener noise and by the spatially colored unbounded noise introduced by Garc\'ia-Ojalvo, Sancho and Ram\'irez-Piscina (GSR noise). We characterize the behavior of the distribution of this novel noise by showing its dependence on both the temporal and the spatial autocorrelation strengths. In particular, we show that the distribution experiences a stochastic transition from bimodality to trimodality. Then, we employ the noise here defined to study phase transitions on Ginzburg-Landau model. Various phenomena are evidenced by means of numerical simulations, among which re-entrant transitions, as well as differences in the response of the system to GSR noise additive perturbations. Finally, we compare the statistical behaviors induced by the sine-Wiener noise with those caused by 'equivalent' GSR noises.Comment: 17 pages, 13 figure

    Spatio-temporal Bounded Noises, and transitions induced by them in solutions of real Ginzburg-Landau model

    Full text link
    In this work, we introduce two spatio-temporal colored bounded noises, based on the zero-dimensional Cai-Lin and Tsallis-Borland noises. We then study and characterize the dependence of the defined bounded noises on both a temporal correlation parameter τ\tau and on a spatial coupling parameter λ\lambda. The boundedness of these noises has some consequences on their equilibrium distributions. Indeed in some cases varying λ\lambda may induce a transition of the distribution of the noise from bimodality to unimodality. With the aim to study the role played by bounded noises on nonlinear dynamical systems, we investigate the behavior of the real Ginzburg-Landau time-varying model additively perturbed by such noises. The observed phase transitions phenomenology is quite different from the one observed when the perturbations are unbounded. In particular, we observed an inverse "order-to-disorder" transition, and a re-entrant transition, with dependence on the specific type of bounded noise.Comment: 12 (main text)+5 (supplementary) page

    Toward a New Paradigm in the Analysis of Asteroseismic Lightcurves

    Get PDF
    This paper aims at being a provocative guide to the future of asteroseismology from the perspective of the analysis of time series, where the fundamentals of harmonic analysis are subjected to stress tests. In this context, we give an annotated summary of our research over the last decades on harmonic analysis of A-F stars. We discuss and explore the consequences of our findings, which may extend to any kind of pulsators. As well, we analyse the impact of this reconsideration on future asteroseismic studies, which would entail a paradigm shift. This includes a discussion on the presence of fractal behavior in δ Sct stars, and how this can be used to develop a stopping criterion of the pre-whitening process, as an alternative to SNR (or significance) criterion. Drilling a scientific paradigm has its natural resilience, hence the path described here is being arduous, although fruitful at the same time.SF, JP-G, JR, ML-M, and RG acknowledges financial support from the State Agency for Research of the Spanish MCIU through the Center of Excellence Severo Ochoa award for the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and Spanish public funds for research under projects ESP2015-65712- C5-5-R. JS and AG acknowledge funding support from Spanish public funds for research under projects ESP2017-87676-C5-2- R. JS also acknowledges funding support from project RYC2012-09913 under the Ramón y Cajal program of the Spanish MINECO. AG acknowledges support from Universidad de Granada under project E-FQM-041-UGR18 from the Programa Operativo FEDER 2014–2020 programme by Junta de Andalucía regional Government

    Self-organization without conservation: Are neuronal avalanches generically critical?

    Full text link
    Recent experiments on cortical neural networks have revealed the existence of well-defined avalanches of electrical activity. Such avalanches have been claimed to be generically scale-invariant -- i.e. power-law distributed -- with many exciting implications in Neuroscience. Recently, a self-organized model has been proposed by Levina, Herrmann and Geisel to justify such an empirical finding. Given that (i) neural dynamics is dissipative and (ii) there is a loading mechanism "charging" progressively the background synaptic strength, this model/dynamics is very similar in spirit to forest-fire and earthquake models, archetypical examples of non-conserving self-organization, which have been recently shown to lack true criticality. Here we show that cortical neural networks obeying (i) and (ii) are not generically critical; unless parameters are fine tuned, their dynamics is either sub- or super-critical, even if the pseudo-critical region is relatively broad. This conclusion seems to be in agreement with the most recent experimental observations. The main implication of our work is that, if future experimental research on cortical networks were to support that truly critical avalanches are the norm and not the exception, then one should look for more elaborate (adaptive/evolutionary) explanations, beyond simple self-organization, to account for this.Comment: 28 pages, 11 figures, regular pape

    Enhancing neural-network performance via assortativity

    Full text link
    The performance of attractor neural networks has been shown to depend crucially on the heterogeneity of the underlying topology. We take this analysis a step further by examining the effect of degree-degree correlations -- or assortativity -- on neural-network behavior. We make use of a method recently put forward for studying correlated networks and dynamics thereon, both analytically and computationally, which is independent of how the topology may have evolved. We show how the robustness to noise is greatly enhanced in assortative (positively correlated) neural networks, especially if it is the hub neurons that store the information.Comment: 9 pages, 7 figure

    Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19.

    Get PDF
    Objectives To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Methods Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Results Mean gestational age at diagnosis was 30.6+/-9.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; pPeer reviewe

    Risk Factors Associated with Adverse Fetal Outcomes in Pregnancies Affected by Coronavirus Disease 2019 (COVID-19): A Secondary Analysis of the WAPM study on COVID-19

    Get PDF
    To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Mean gestational age at diagnosis was 30.6\ub19.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; p<0.001), birthweight (OR: 1.17, 95% CI 1.09-1.12.7 per 100 g decrease; p=0.012) and maternal ventilatory support, including either need for oxygen or CPAP (OR: 4.12, 95% CI 2.3-7.9; p=0.001) were independently associated with composite adverse fetal outcome. Early gestational age at infection, maternal ventilatory supports and low birthweight are the main determinants of adverse perinatal outcomes in fetuses with maternal COVID-19 infection. Conversely, the risk of vertical transmission seems negligible

    Study of long-range correlations and criticality in neural media and other biological systems

    No full text
    Tesis Univ. Granada. Departamento de Electromagnetismo y FĂ­sica de la MaterĂ­a. LeĂ­da el 3 de octubre de 2011Tesis Univ. Granada. Instituto Carlos I de FĂ­sica TeĂłrica y Computaciona
    corecore