10 research outputs found
Neural Correlates of Anesthesia in Newborn Mice and Humans
Monitoring the hypnotic component of anesthesia during surgeries is critical to prevent intraoperative awareness and reduce adverse side effects. For this purpose, electroencephalographic (EEG) methods complementing measures of autonomic functions and behavioral responses are in use in clinical practice. However, in human neonates and infants existing methods may be unreliable and the correlation between brain activity and anesthetic depth is still poorly understood. Here, we characterized the effects of different anesthetics on brain activity in neonatal mice and developed machine learning approaches to identify electrophysiological features predicting inspired or end-tidal anesthetic concentration as a proxy for anesthetic depth. We show that similar features from EEG recordings can be applied to predict anesthetic concentration in neonatal mice and humans. These results might support a novel strategy to monitor anesthetic depth in human newborns
Oscillatory Activity in Developing Prefrontal Networks Results from Theta-Gamma-Modulated Synaptic Inputs
SummaryThe hippocampus-driven entrainment of neonatal prefrontal circuits in theta-gamma oscillations contributes to the maturation of cognitive abilities, yet the underlying synaptic mechanisms are still unknown. Here we combine patch-clamp recordings from morphologically and neurochemically characterized layer V pyramidal neurons and interneurons in vivo, with extracellular recordings from the prelimbic cortex (PL) of awake and lightly anesthetized neonatal rats, to elucidate the synaptic framework of early network oscillations. We demonstrate that all neurons spontaneously fire bursts of action potentials. They receive barrages of fast and slow glutamatergic as well as GABAergic synaptic inputs. Oscillatory theta activity results from long-range coupling of pyramidal neurons, presumably within prelimbic-hippocampal circuits, and from local interactions between interneurons. In contrast, beta-low gamma activity requires external glutamatergic drive on prelimbic interneurons. High-frequency oscillations in layer V are independent of interactions at chemical synapses. Thus, specific theta-gamma-modulated synaptic interactions represent the substrate of network oscillations in the developing PL
Methodological Approach for Optogenetic Manipulation of Neonatal Neuronal Networks
Coordinated patterns of electrical activity are critical for the functional maturation of neuronal networks, yet their interrogation has proven difficult in the developing brain. Optogenetic manipulations strongly contributed to the mechanistic understanding of network activation in the adult brain, but difficulties to specifically and reliably express opsins at neonatal age hampered similar interrogation of developing circuits. Here, we introduce a protocol that enables to control the activity of specific neuronal populations by light, starting from early postnatal development. We show that brain area-, layer- and cell type-specific expression of opsins by in utero electroporation (IUE), as exemplified for the medial prefrontal cortex (PFC) and hippocampus (HP), permits the manipulation of neuronal activity in vitro and in vivo. Both individual and population responses to different patterns of light stimulation are monitored by extracellular multi-site recordings in the medial PFC of neonatal mice. The expression of opsins via IUE provides a flexible approach to disentangle the cellular mechanism underlying early rhythmic network activity, and to elucidate the role of early neuronal activity for brain maturation, as well as its contribution to neurodevelopmental disorders
Spindle Activity Orchestrates Plasticity during Development and Sleep
Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research
Protocol for adeno-associated virus-mediated optogenetic activation of olfactory output neurons in neonatal mice
Summary: Optogenetic manipulation has proven a powerful tool for investigating the mechanisms underlying the function of neuronal networks, but implementing the technique on mammals during early development remains challenging. Here, we present a comprehensive workflow to specifically manipulate mitral/tufted cells (M/TCs), the output neurons in the olfactory circuit, mediated by adeno-associated virus (AAV) transduction and light stimulation in neonatal mice and monitor neuronal and network activity with in vivo electrophysiology. This method represents an efficient approach to elucidate functional brain development.For complete details on the use and execution of this protocol, please refer to Chen et al.1,2,3 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics
Data from: Glutamatergic drive along the septo-temporal axis of hippocampus boosts prelimbic oscillations in the neonatal mouse
The long-range coupling within prefrontal-hippocampal networks that account for cognitive performance emerges early in life. The discontinuous hippocampal theta bursts have been proposed to drive the generation of neonatal prefrontal oscillations, yet the cellular substrate of these early interactions is still unresolved. Here, we selectively target optogenetic manipulation of glutamatergic projection neurons in the CA1 area of either dorsal or intermediate/ventral hippocampus at neonatal age to elucidate their contribution to the emergence of prefrontal oscillatory entrainment. We show that despite stronger theta and ripples power in dorsal hippocampus, the prefrontal cortex is mainly coupled with intermediate/ventral hippocampus by phase-locking of neuronal firing via dense direct axonal projections. Theta band-confined activation by light of pyramidal neurons in intermediate/ventral but not dorsal CA1 that were transfected by in utero electroporation with high-efficiency channelrhodopsin boosts prefrontal oscillations. Our data causally elucidates the cellular origin of the long-range coupling in the developing brain
Initial presenting manifestations in 16,486 patients with inborn errors of immunity include infections and noninfectious manifestations
Background: Inborn errors of immunity (IEI) are rare diseases, which makes diagnosis a challenge. A better description of the initial presenting manifestations should improve awareness and avoid diagnostic delay. Although increased infection susceptibility is a well-known initial IEI manifestation, less is known about the frequency of other presenting manifestations. Objective: We sought to analyze age-related initial presenting manifestations of IEI including different IEI disease cohorts. Methods: We analyzed data on 16,486 patients of the European Society for Immunodeficiencies Registry. Patients with autoinflammatory diseases were excluded because of the limited number registered. Results: Overall, 68% of patients initially presented with infections only, 9% with immune dysregulation only, and 9% with a combination of both. Syndromic features were the presenting feature in 12%, 4% had laboratory abnormalities only, 1.5% were diagnosed because of family history only, and 0.8% presented with malignancy. Two-third of patients with IEI presented before the age of 6 years, but a quarter of patients developed initial symptoms only as adults. Immune dysregulation was most frequently recognized as an initial IEI manifestation between age 6 and 25 years, with male predominance until age 10 years, shifting to female predominance after age 40 years. Infections were most prevalent as a first manifestation in patients presenting after age 30 years. Conclusions: An exclusive focus on infection-centered warning signs would have missed around 25% of patients with IEI who initially present with other manifestations. (J Allergy Clin Immunol 2021;148:1332-41.