196 research outputs found

    A new mouth brooder species of Gymnogeophagus with hypertrophied lips (Cichliformes: Cichlidae)

    Get PDF
    A new mouth breeder species of Gymnogeophagus is described from a tributary of the río Uruguay. It is distinguished from most species of the genus by the presence of hypertrophied lips, and from G. labiatus and G. pseudolabiatus by the color pattern. The presence of successive allopatric species of the Gymnogeophagus gymnogenys clade inhabiting the tributaries of the río Uruguay is discussed.Una nueva especie incubadora bucal de Gymnogeophagus es descripta de un tributario del Río Uruguay. Se distingue de la mayoría de las especies del género por la presencia de labios hipertrofiados, y de G. labiatus y G. pseudolabiatus por su patrón de coloración. Se discute la presencia de sucesivas especies alopátricas del clado Gymnogeophagus gymnogenys habitando los tributarios del Río Uruguay

    Morphological variability in populations of the fiddler crab Leptuca uruguayensis (Nobili, 1901) (Crustacea, Decapoda, Ocypodidae) from South America

    Get PDF
    Um estudo comparativo sobre o tamanho e a forma de Leptuca uruguayensis foi realizado entre as populações do Rio das Garças, Brasil (BP) e do Rio Solís Grande, Uruguai (UP). O tamanho do início da maturidade sexual, também foi estimado para UP. Foi analisado um total de 36 indivíduos para BP e 387 para UP. Para a análise do crescimento relativo, a largura da carapaça (LC) para ambos os sexos, comprimento do maior quelípodo (CMQ) dos machos e a largura do abdome (LA) das fêmeas foram mensurados. O tamanho da carapaça e do quelípodo foi maior em UP. A forma também diferiu, sendo a carapaça de UP mais ampla do que BP; rostro projetado para a frente e margem posterior posicionada mais anteriormente; o quelípodo de UP também foi mais amplo do que BP. Em UP, a LC variou de 4,28-19,5 mm (machos) e 2,53-16,3 mm (fêmeas); o CMQ variou de 1,79-31,60 mm (machos) e a LA de 0,80-8,53 mm (fêmeas). O início da maturidade sexual para UP foi estimado em 12,20 mm LC (machos) e 7,81 mm (fêmeas). Essas diferenças podem indicar que variáveis abióticas estão atuando distintamente nas duas localidades.A comparative study on size and shape of Leptuca uruguayensis was carried out between populations from Garças River, Brazil (BP), and Solís Grande River, Uruguay (UP). The size of the onset of sexual maturity was also estimated for UP. A total of 36 crabs BP and 387 crabs UP were analyzed. In the relative growth analysis, carapace width (CW) for both sexes, major cheliped length (LMC) for males and abdomen width (AW) for females were measured. The centroid size of carapace (1.40±0.19 cm BP and 1.88±0.30 cm UP) and cheliped (1.16±0.22 cm BP and 1.58±0.45 cm UP) differed significantly (

    First Record of Loricariichthys edentatus (Siluriformes: Loricariidae) in the Paraná River

    Get PDF
    Campañas realizadas al noreste de Argentina en el río Paraná revelaron la presencia de la vieja del agua Loricariichthys edentatus Reis & Pereira 2000, que representa el primer registro de esta especie para esa cuenca.Recent expeditions to northeastern Argentina in the Paraná River revealed the presence of the armored catfish Loricariichthys edentatus Reis & Pereira 2000, which represents the first record of this species to that basin.Fil: Teran, Guillermo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Aguilera, Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; ArgentinaFil: Serra, Wilson Sebastián. Museo Nacional de Historia Natural; UruguayFil: Ruiz Diaz, Federico Jose. Universidad Nacional del Nordeste. Facultad de Ciencias Veterinarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mirande, Juan Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - Tucumán. Unidad Ejecutora Lillo; Argentin

    Transcriptome-based SNP discovery and validation in the hybrid zone of the neotropical annual fish genus Austrolebias

    Get PDF
    The genus Austrolebias (Cyprinodontiformes: Rivulidae) represents a specious group of taxa following annual life cycles in the neotropical ichthyofauna. They live in temporary ponds and each generation must be completed in a few months, depending on environmental stochasticity. Annual fish survive the dry season through diapausing eggs buried in the substrate of these ponds. A hypothesized bimodal hybrid zone between two taxa of the genus, A. charrua and A. reicherti from Dos Patos Merin lagoon system, was recently proposed based on genetics and morphological analyses. However, hundreds of additional nuclear molecular markers should be used to strongly support this hypothesized bimodal pattern. In the present paper, we conducted RNA-seq-based sequencing of the transcriptomes from pools of individuals of A. charrua, A. reicherti and their putative natural hybrids from the previously characterized hybrid zone. As a result, we identified a set of 111,725 SNP (single nucleotide polymorphism) markers, representing presumably fixed allelic di erences among the two species. The present study provided the first panel of 106 SNP markers as a single diagnostic multiplex assay and validated their capacity to reconstruct the patterns of the hybrid zone between both taxa. These nuclear markers combined with Cytb gene and morphological analyses detected a population structure in which some groups among the hybrid swarms showed di erent level of introgression towards one or the other parental species according to their geographic distribution. High-quality transcriptomes and a large set of gene-linked SNPs should greatly facilitate functional and population genomics studies in the hybrid zone of these endangered species

    Targeting AgRP neurons to maintain energy balance: lessons from animal models

    Get PDF
    The current obesity epidemic is a major worldwide health and economic burden. In the modern environment, an increase in the intake of high-fat and high-sugar foods plays a crucial role in the development of obesity by disrupting the mechanisms governing food intake and energy balance. Food intake and whole-body energy balance are regulated by the central nervous system through a sophisticated neuronal network located mostly in the hypothalamus. In particular, the hypothalamic arcuate nucleus (ARC) is a fundamental center that senses hormonal and nutrient-related signals informing about the energy state of the organism. The ARC contains two small, defined populations of neurons with opposite functions: anorexigenic proopiomelanocortin (POMC)-expressing neurons and orexigenic Agouti-related protein (AgRP)-expressing neurons. AgRP neurons, which also co-produce neuropeptide Y (NPY) and γ-Aminobutyric acid (GABA), are involved in an increase in hunger and a decrease in energy expenditure. In this review, we summarize the key findings from the most common animal models targeting AgRP neurons and the tools used to discern the role of this specific neuronal population in the control of peripheral metabolism, appetite, feeding-related behavior, and other complex behaviors. We also discuss how knowledge gained from these studies has revealed new pathways and key proteins that could be potential therapeutic targets to reduce appetite and food addictions in obesity and other diseases

    Using Inverse Reinforcement Learning with Real Trajectories to Get More Trustworthy Pedestrian Simulation

    Get PDF
    Reinforcement learning is one of the most promising machine learning techniques to get intelligent behaviors for embodied agents in simulations. The output of the classic Temporal Difference family of Reinforcement Learning algorithms adopts the form of a value function expressed as a numeric table or a function approximator. The learned behavior is then derived using a greedy policy with respect to this value function. Nevertheless, sometimes the learned policy does not meet expectations, and the task of authoring is difficult and unsafe because the modification of one value or parameter in the learned value function has unpredictable consequences in the space of the policies it represents. This invalidates direct manipulation of the learned value function as a method to modify the derived behaviors. In this paper, we propose the use of Inverse Reinforcement Learning to incorporate real behavior traces in the learning process to shape the learned behaviors, thus increasing their trustworthiness (in terms of conformance to reality). To do so, we adapt the Inverse Reinforcement Learning framework to the navigation problem domain. Specifically, we use Soft Q-learning, an algorithm based on the maximum causal entropy principle, with MARL-Ped (a Reinforcement Learning-based pedestrian simulator) to include information from trajectories of real pedestrians in the process of learning how to navigate inside a virtual 3D space that represents the real environment. A comparison with the behaviors learned using a Reinforcement Learning classic algorithm (Sarsa(λ)) shows that the Inverse Reinforcement Learning behaviors adjust significantly better to the real trajectories

    New approaches targeting brown adipose tissue transplantation as a therapy in obesity

    Get PDF
    Brown adipose tissue (BAT) is raising high expectations as a potential target in the fight against metabolic disorders such as obesity and type 2 diabetes. BAT utilizes fuels such as fatty acids to maintain body temperature by uncoupling mitochondrial electron transport to produce heat instead of ATP. This process is called thermogenesis. BAT was considered to be exclusive to rodents and human neonates. However, in the last decade several studies have demonstrated that BAT is not only present but also active in adult humans and that its activity is reduced in several pathological conditions, such as aging, obesity, and diabetes. Thus, tremendous efforts are being made by the scientific community to enhance either BAT mass or activity. Several activators of thermogenesis have been described, such as natriuretic peptides, bone morphogenic proteins, or fibroblast growth factor 21. Furthermore, recent studies have tested a therapeutic approach to directly increase BAT mass by the implantation of either adipocytes or fat tissue. This approach might have an important future in regenerative medicine and in the fight against metabolic disorders. Here, we review the emerging field of BAT transplantation including the various sources of mesenchymal stem cell isolation in rodents and humans and the described metabolic outcomes of adipocyte cell transplantation and BAT transplantation in obesity. KEYWORDS: Brown adipose tissue; Obesity; Transplantatio

    Nickel exsolution driven phase transformation from an n=2 to an n=1 Ruddlesden Popper manganite for methane steam reforming reaction in SOFC conditions

    Full text link
    This is the peer reviewed version of the following article: S. Vecino-Mantilla, P. Gauthier-Maradei, M. Huvé, J. M. Serra, P. Roussel, G. H. Gauthier, ChemCatChem 2019, 11, 4631, which has been published in final form at https://doi.org/10.1002/cctc.201901002. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] An original way to perform the exsolution of Ni nanoparticles on a ceramic support was explored for the development of methane steam reforming catalyst in SOFC anode conditions. The n=2 Ruddlesden-Popper (RP) phase La1.5Sr1.5Mn1.5Ni0.5O7 +/-delta has been synthesized by the Pechini method and subsequently reduced with an H-2-N-2 mixture at different temperatures and reducing times to induce the formation of two phases: LaSrMnO4 (n=1 RP) decorated with metallic Ni nanoparticles. Preliminary measurements of catalytic behavior for the steam reforming have been carried out in a reduction-reaction process with a mixture of 82 mol %CH4, 18 mol %N-2 and low steam to carbon ratio (S/C=0.15). The catalyst exhibits a selectivity for CO production (0.97), 14.60 mol % CH4 conversion and around 24.19 mol % H-2 production. Such catalytic behavior was maintained for more than 4 h, with a constant rate of hydrogen production and CH4 conversion rate.The authors acknowledge the financial support of the Colombian Administrative Department of Science, Technology and Innovation COLCIENCIAS (Project #110265842833 "Symmetrical high temperature Fuel Cell operating with Colombian natural gas" (contract #038-2015) and S. Vecino-Mantilla's Ph.D. scholarship (call #647)) and of the Spanish National Research Council CSIC (Project #COOPA20112). The authors are also grateful to UIS' X-Ray Laboratory (Parque Tecnologico Guatiguara) for XRD measurements, UPV's Electronic Microscopy Laboratory for the FESEM analysis, and finally to Margarita Vecino-Mantilla, Carolina Cardenas-Velandia, Santiago Paez-Duque, Ivan Suarez-Acelas (UIS), Maria Fabuel (UPV) and Olivier Gardoll (UCCS) for their contribution to materials synthesis and characterization. As well as Santiago Palencia, Monica Sandoval (UIS) and Caroline Pirovano (UCCS) are warmly acknowledged for useful discussions.Vecino-Mantilla, S.; Gauthier-Maradei, P.; Huvé, M.; Serra Alfaro, JM.; Roussel, P.; Gauthier, GH. (2019). Nickel exsolution driven phase transformation from an n=2 to an n=1 Ruddlesden Popper manganite for methane steam reforming reaction in SOFC conditions. ChemCatChem. 11(18):4631-4641. https://doi.org/10.1002/cctc.201901002S463146411118Ghezel-Ayagh, H., & Borglum, B. P. (2017). Review of Progress in Solid Oxide Fuel Cells at FuelCell Energy. ECS Transactions, 78(1), 77-86. doi:10.1149/07801.0077ecstPark, B. H., & Choi, G. M. (2014). Ex-solution of Ni nanoparticles in a La0.2Sr0.8Ti1−xNixO3−δ alternative anode for solid oxide fuel cell. Solid State Ionics, 262, 345-348. doi:10.1016/j.ssi.2013.10.016Chung, Y. S., Kim, T., Shin, T. H., Yoon, H., Park, S., Sammes, N. M., … Chung, J. S. (2017). In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden–Popper phase with exsolved Fe nanoparticles as an anode for SOFCs. Journal of Materials Chemistry A, 5(14), 6437-6446. doi:10.1039/c6ta09692aSun, Y., Li, J., Zeng, Y., Amirkhiz, B. S., Wang, M., Behnamian, Y., & Luo, J. (2015). A-site deficient perovskite: the parent for in situ exsolution of highly active, regenerable nano-particles as SOFC anodes. Journal of Materials Chemistry A, 3(20), 11048-11056. doi:10.1039/c5ta01733eHu, Y., Bouffanais, Y., Almar, L., Morata, A., Tarancon, A., & Dezanneau, G. (2013). La2−xSrxCoO4−δ (x = 0.9, 1.0, 1.1) Ruddlesden-Popper-type layered cobaltites as cathode materials for IT-SOFC application. International Journal of Hydrogen Energy, 38(7), 3064-3072. doi:10.1016/j.ijhydene.2012.12.047Li, Y., Zhang, W., Zheng, Y., Chen, J., Yu, B., Chen, Y., & Liu, M. (2017). Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability. Chemical Society Reviews, 46(20), 6345-6378. doi:10.1039/c7cs00120gKharton, V. ., Yaremchenko, A. ., Shaula, A. ., Patrakeev, M. ., Naumovich, E. ., Logvinovich, D. ., … Marques, F. M. . (2004). Transport properties and stability of Ni-containing mixed conductors with perovskite- and K2NiF4-type structure. Journal of Solid State Chemistry, 177(1), 26-37. doi:10.1016/s0022-4596(03)00261-5Skinner, S. (2000). Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics, 135(1-4), 709-712. doi:10.1016/s0167-2738(00)00388-xBalachandran, P. V., Puggioni, D., & Rondinelli, J. M. (2013). Crystal-Chemistry Guidelines for Noncentrosymmetric A2BO4 Ruddlesden−Popper Oxides. Inorganic Chemistry, 53(1), 336-348. doi:10.1021/ic402283cAutret, C., Martin, C., Hervieu, M., Retoux, R., Raveau, B., André, G., & Bourée, F. (2004). Structural investigation of Ca2MnO4 by neutron powder diffraction and electron microscopy. Journal of Solid State Chemistry, 177(6), 2044-2052. doi:10.1016/j.jssc.2004.02.012Dailly, J., Fourcade, S., Largeteau, A., Mauvy, F., Grenier, J. C., & Marrony, M. (2010). Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells. Electrochimica Acta, 55(20), 5847-5853. doi:10.1016/j.electacta.2010.05.034ZHAO, H., MAUVY, F., LALANNE, C., BASSAT, J., FOURCADE, S., & GRENIER, J. (2008). New cathode materials for ITSOFC: Phase stability, oxygen exchange and cathode properties of La2−xNiO4+δ. Solid State Ionics, 179(35-36), 2000-2005. doi:10.1016/j.ssi.2008.06.019Yoo, Y.-S., Choi, M., Hwang, J.-H., Im, H.-N., Singh, B., & Song, S.-J. (2015). La2NiO4+δ as oxygen electrode in reversible solid oxide cells. Ceramics International, 41(5), 6448-6454. doi:10.1016/j.ceramint.2015.01.083Das, A., Xhafa, E., & Nikolla, E. (2016). Electro- and thermal-catalysis by layered, first series Ruddlesden-Popper oxides. Catalysis Today, 277, 214-226. doi:10.1016/j.cattod.2016.07.014Liping, S., Lihua, H., Hui, Z., Qiang, L., & Pijolat, C. (2008). La substituted Sr2MnO4 as a possible cathode material in SOFC. Journal of Power Sources, 179(1), 96-100. doi:10.1016/j.jpowsour.2007.12.090Jin, C., Yang, Z., Zheng, H., Yang, C., & Chen, F. (2012). La0.6Sr1.4MnO4 layered perovskite anode material for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 14(1), 75-77. doi:10.1016/j.elecom.2011.11.008Sandoval, M. V., Pirovano, C., Capoen, E., Jooris, R., Porcher, F., Roussel, P., & Gauthier, G. H. (2017). In-depth study of the Ruddlesden-Popper LaxSr2−xMnO4±δ family as possible electrode materials for symmetrical SOFC. International Journal of Hydrogen Energy, 42(34), 21930-21943. doi:10.1016/j.ijhydene.2017.07.062Li-Ping, S., Qiang, L., Li-Hua, H., Hui, Z., Guo-Ying, Z., Nan, L., … Pijolat, C. (2011). Synthesis and performance of Sr1.5LaxMnO4 as cathode materials for intermediate temperature solid oxide fuel cell. Journal of Power Sources, 196(14), 5835-5839. doi:10.1016/j.jpowsour.2011.03.016Shen, J., Yang, G., Zhang, Z., Zhou, W., Wang, W., & Shao, Z. (2016). Tuning layer-structured La0.6Sr1.4MnO4+δ into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. Journal of Materials Chemistry A, 4(27), 10641-10649. doi:10.1039/c6ta02986hThommy, L., Joubert, O., Hamon, J., & Caldes, M.-T. (2016). Impregnation versus exsolution: Using metal catalysts to improve electrocatalytic properties of LSCM-based anodes operating at 600 °C. International Journal of Hydrogen Energy, 41(32), 14207-14216. doi:10.1016/j.ijhydene.2016.06.088Irvine, J. T. S., Neagu, D., Verbraeken, M. C., Chatzichristodoulou, C., Graves, C., & Mogensen, M. B. (2016). Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nature Energy, 1(1). doi:10.1038/nenergy.2015.14Zhou, J., Shin, T.-H., Ni, C., Chen, G., Wu, K., Cheng, Y., & Irvine, J. T. S. (2016). In Situ Growth of Nanoparticles in Layered Perovskite La0.8Sr1.2Fe0.9Co0.1O4−δ as an Active and Stable Electrode for Symmetrical Solid Oxide Fuel Cells. Chemistry of Materials, 28(9), 2981-2993. doi:10.1021/acs.chemmater.6b00071Hua, B., Li, M., Sun, Y.-F., Li, J.-H., & Luo, J.-L. (2017). Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles. ChemSusChem, 10(17), 3333-3341. doi:10.1002/cssc.201700936Yang, C., Li, J., Lin, Y., Liu, J., Chen, F., & Liu, M. (2015). In situ fabrication of CoFe alloy nanoparticles structured (Pr0.4Sr0.6)3(Fe0.85Nb0.15)2O7 ceramic anode for direct hydrocarbon solid oxide fuel cells. Nano Energy, 11, 704-710. doi:10.1016/j.nanoen.2014.12.001Zhang, W., & Zheng, W. (2014). Exsolution-Mimic Heterogeneous Surfaces: Towards Unlimited Catalyst Design. ChemCatChem, 7(1), 48-50. doi:10.1002/cctc.201402757Liu, S., Zhang, W., Deng, T., Wang, D., Wang, X., Zhang, X., … Zheng, W. (2017). Mechanistic Origin of Enhanced CO Catalytic Oxidation over Co3 O4 /LaCoO3 at Lower Temperature. ChemCatChem, 9(16), 3102-3106. doi:10.1002/cctc.201700937Arrivé, C., Delahaye, T., Joubert, O., & Gauthier, G. (2013). Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells. Journal of Power Sources, 223, 341-348. doi:10.1016/j.jpowsour.2012.09.062Gao, Y., Chen, D., Saccoccio, M., Lu, Z., & Ciucci, F. (2016). From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy, 27, 499-508. doi:10.1016/j.nanoen.2016.07.013Sun, Y.-F., Zhang, Y.-Q., Chen, J., Li, J.-H., Zhu, Y.-T., Zeng, Y.-M., … Luo, J.-L. (2016). New Opportunity for in Situ Exsolution of Metallic Nanoparticles on Perovskite Parent. Nano Letters, 16(8), 5303-5309. doi:10.1021/acs.nanolett.6b02757Ouellette, R. J., & Rawn, J. D. (2014). Organometallic Chemistry of Transition Metal Elements and Introduction to Retrosynthesis. Organic Chemistry, 567-593. doi:10.1016/b978-0-12-800780-8.00017-6Yaremchenko, A. A., Bannikov, D. O., Kovalevsky, A. V., Cherepanov, V. A., & Kharton, V. V. (2008). High-temperature transport properties, thermal expansion and cathodic performance of Ni-substituted LaSr2Mn2O7−δ. Journal of Solid State Chemistry, 181(11), 3024-3032. doi:10.1016/j.jssc.2008.07.038Chupakhina, T. I., Bazuev, G. V., & Zabolotskaya, E. V. (2010). Synthesis and magnetic properties of a new layered oxide La1.5Sr1.5Mn1.25Ni0.75O6.67. Russian Journal of Inorganic Chemistry, 55(2), 247-253. doi:10.1134/s0036023610020178Jardiel, T., Caldes, M. T., Moser, F., Hamon, J., Gauthier, G., & Joubert, O. (2010). New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5−xNix)O3−δ and (La0.75Sr0.25)(Cr0.5−xNixMn0.5)O3−δ. Solid State Ionics, 181(19-20), 894-901. doi:10.1016/j.ssi.2010.05.012Svoboda, K., Siewiorek, A., Baxter, D., Rogut, J., & Pohořelý, M. (2008). Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures. Energy Conversion and Management, 49(2), 221-231. doi:10.1016/j.enconman.2007.06.036Bhardwaj, A., Kaur, J., Wuest, M., & Wuest, F. (2017). In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nature Communications, 8(1). doi:10.1038/s41467-016-0009-6Zhu, J., Li, H., Zhong, L., Xiao, P., Xu, X., Yang, X., … Li, J. (2014). Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis. ACS Catalysis, 4(9), 2917-2940. doi:10.1021/cs500606gBroux, T., Prestipino, C., Bahout, M., Hernandez, O., Swain, D., Paofai, S., … Greaves, C. (2013). Unprecedented High Solubility of Oxygen Interstitial Defects in La1.2Sr0.8MnO4+δ up to δ ∼ 0.42 Revealed by In Situ High Temperature Neutron Powder Diffraction in Flowing O2. Chemistry of Materials, 25(20), 4053-4063. doi:10.1021/cm402194qMUNNINGS, C., SKINNER, S., AMOW, G., WHITFIELD, P., & DAVIDSON, I. (2006). Structure, stability and electrical properties of the La(2−x)SrxMnO4±δ solid solution series. Solid State Ionics, 177(19-25), 1849-1853. doi:10.1016/j.ssi.2006.01.009Li, R. K., & Greaves, C. (2000). Synthesis and Characterization of the Electron-Doped Single-Layer Manganite La1.2Sr0.8MnO4−δ and Its Oxidized Phase La1.2Sr0.8MnO4+δ. Journal of Solid State Chemistry, 153(1), 34-40. doi:10.1006/jssc.2000.8735Wang, Y., Shih, K., & Jiang, X. (2012). Phase transformation during the sintering of γ-alumina and the simulated Ni-laden waste sludge. Ceramics International, 38(3), 1879-1886. doi:10.1016/j.ceramint.2011.10.015Senff, D., Reutler, P., Braden, M., Friedt, O., Bruns, D., Cousson, A., … Revcolevschi, A. (2005). Crystal and magnetic structure ofLa1−xSr1+xMnO4: Role of the orbital degree of freedom. Physical Review B, 71(2). doi:10.1103/physrevb.71.024425Larochelle, S., Mehta, A., Lu, L., Mang, P. K., Vajk, O. P., Kaneko, N., … Greven, M. (2005). Structural and magnetic properties of the single-layer manganese oxideLa1−xSr1+xMnO4. Physical Review B, 71(2). doi:10.1103/physrevb.71.024435Bieringer, M., & Greedan, J. E. (2002). Structure and magnetism in BaLaMnO4 +/– δ (δ = 0.00, 0.10) and BaxSr1 – xLaMnO4. Disappearance of magnetic order for x > 0.30. Journal of Materials Chemistry, 12(2), 279-287. doi:10.1039/b104405mKitchen, H. J., Saratovsky, I., & Hayward, M. A. (2010). Topotactic reduction as a synthetic route for the preparation of low-dimensional Mn(II) oxide phases: The structure and magnetism of LaAMnO4-x (A = Sr, Ba). Dalton Transactions, 39(26), 6098. doi:10.1039/b923966aBandyopadhyay, J., & Gupta, K. P. (1977). Low temperature lattice parameter of nickel and some nickel-cobalt alloys and Grüneisen parameter of nickel. Cryogenics, 17(6), 345-347. doi:10.1016/0011-2275(77)90130-8Lai, K.-Y., & Manthiram, A. (2018). Evolution of Exsolved Nanoparticles on a Perovskite Oxide Surface during a Redox Process. Chemistry of Materials, 30(8), 2838-2847. doi:10.1021/acs.chemmater.8b01029Blasse, G. (1965). New compositions with K2NiF4 structure. Journal of Inorganic and Nuclear Chemistry, 27(12), 2683-2684. doi:10.1016/0022-1902(65)80178-6Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y., & Matsui, Y. (1995). Magnetic and electronic properties in hole-doped manganese oxides with layered structures:La1−xSr1+xMnO4. Physical Review B, 51(5), 3297-3300. doi:10.1103/physrevb.51.3297Ganguly, P., & Rao, C. N. R. (1984). Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures. Journal of Solid State Chemistry, 53(2), 193-216. doi:10.1016/0022-4596(84)90094-xBenabad, A., Daoudi, A., Salmon, R., & Le Flem, G. (1977). Les phases SrLnMnO4 (Ln = La, Nd, Sm, Gd), BaLnMnO4 (Ln = La, Nd) et M1+xLa1−xMnO4 (M = Sr, Ba). Journal of Solid State Chemistry, 22(2), 121-126. doi:10.1016/0022-4596(77)90028-7Wu, W. B., Huang, D. J., Guo, G. Y., Lin, H.-J., Hou, T. Y., Chang, C. F., … Jo, T. (2004). Orbital polarization of LaSrMnO4 studied by soft X-ray linear dichroism. Journal of Electron Spectroscopy and Related Phenomena, 137-140, 641-645. doi:10.1016/j.elspec.2004.02.072GONZALEZDELACRUZ, V., HOLGADO, J., PERENIGUEZ, R., & CABALLERO, A. (2008). Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system. Journal of Catalysis, 257(2), 307-314. doi:10.1016/j.jcat.2008.05.009Dulub, O., Hebenstreit, W., & Diebold, U. (2000). Imaging Cluster Surfaces with Atomic Resolution: The Strong Metal-Support Interaction State of Pt Supported onTiO2(110). Physical Review Letters, 84(16), 3646-3649. doi:10.1103/physrevlett.84.3646Wei, T., Jia, L., Zheng, H., Chi, B., Pu, J., & Li, J. (2018). LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4. Applied Catalysis A: General, 564, 199-207. doi:10.1016/j.apcata.2018.07.031A. Adamson A. Gat Physical Chemistry of Surfaces John Wiley & Sons Inc. New York 1997.Oh, T.-S., Rahani, E. K., Neagu, D., Irvine, J. T. S., Shenoy, V. B., Gorte, R. J., & Vohs, J. M. (2015). Evidence and Model for Strain-Driven Release of Metal Nanocatalysts from Perovskites during Exsolution. The Journal of Physical Chemistry Letters, 6(24), 5106-5110. doi:10.1021/acs.jpclett.5b02292Blander, M., & Katz, J. L. (1975). Bubble nucleation in liquids. AIChE Journal, 21(5), 833-848. doi:10.1002/aic.690210502Kelchner, C. L., Plimpton, S. J., & Hamilton, J. C. (1998). Dislocation nucleation and defect structure during surface indentation. Physical Review B, 58(17), 11085-11088. doi:10.1103/physrevb.58.11085Neagu, D., Tsekouras, G., Miller, D. N., Ménard, H., & Irvine, J. T. S. (2013). In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 5(11), 916-923. doi:10.1038/nchem.1773Raabe, O. G. (1971). Particle size analysis utilizing grouped data and the log-normal distribution. Journal of Aerosol Science, 2(3), 289-303. doi:10.1016/0021-8502(71)90054-1Pauw, B. R., Kästner, C., & Thünemann, A. F. (2017). Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison. Journal of Applied Crystallography, 50(5), 1280-1288. doi:10.1107/s160057671701010xNeagu, D., Oh, T.-S., Miller, D. N., Ménard, H., Bukhari, S. M., Gamble, S. R., … Irvine, J. T. S. (2015). Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution. Nature Communications, 6(1). doi:10.1038/ncomms9120Hansen, T. W., DeLaRiva, A. T., Challa, S. R., & Datye, A. K. (2013). Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening? Accounts of Chemical Research, 46(8), 1720-1730. doi:10.1021/ar3002427Lif, J., Skoglundh, M., & Löwendahl, L. (2002). Sintering of nickel particles supported on γ-alumina in ammonia. Applied Catalysis A: General, 228(1-2), 145-154. doi:10.1016/s0926-860x(01)00957-7Agüero, F. N., Beltrán, A. M., Fernández, M. A., & Cadús, L. E. (2019). Surface nickel particles generated by exsolution from a perovskite structure. Journal of Solid State Chemistry, 273, 75-80. doi:10.1016/j.jssc.2019.02.036Asoro, M. A., Ferreira, P. J., & Kovar, D. (2014). In situ transmission electron microscopy and scanning transmission electron microscopy studies of sintering of Ag and Pt nanoparticles. Acta Materialia, 81, 173-183. doi:10.1016/j.actamat.2014.08.028Girona, K., Sailler, S., Gélin, P., Bailly, N., Georges, S., & Bultel, Y. (2014). Modelling of gradual internal reforming process over Ni-YSZ SOFC anode with a catalytic layer. The Canadian Journal of Chemical Engineering, 93(2), 285-296. doi:10.1002/cjce.22113W. K. B. W. Ramli Exsolved Base Metal Catalyst Systems with Anchored Nanoparticles for Carbon Monoxide (CO) and Nitric Oxides (NO Oxidation Newcastle University 2017.Sadykov, V., Mezentseva, N., Alikina, G., Bunina, R., Pelipenko, V., Lukashevich, A., … Rietveld, B. (2009). Nanocomposite catalysts for internal steam reforming of methane and biofuels in solid oxide fuel cells: Design and performance. Catalysis Today, 146(1-2), 132-140. doi:10.1016/j.cattod.2009.02.035Atkinson, A., Barnett, S., Gorte, R. J., Irvine, J. T. S., McEvoy, A. J., Mogensen, M., … Vohs, J. (2004). Advanced anodes for high-temperature fuel cells. Nature Materials, 3(1), 17-27. doi:10.1038/nmat1040Dicks, A. . (1998). Advances in catalysts for internal reforming in high temperature fuel cells. Journal of Power Sources, 71(1-2), 111-122. doi:10.1016/s0378-7753(97)02753-5Roy, P. S., Park, N.-K., & Kim, K. (2014). Metal foam-supported Pd–Rh catalyst for steam methane reforming and its application to SOFC fuel processing. International Journal of Hydrogen Energy, 39(9), 4299-4310. doi:10.1016/j.ijhydene.2014.01.004Postole, G., Bosselet, F., Bergeret, G., Prakash, S., & Gélin, P. (2014). On the promoting effect of H2S on the catalytic H2 production over Gd-doped ceria from CH4/H2O mixtures for solid oxide fuel cell applications. Journal of Catalysis, 316, 149-163. doi:10.1016/j.jcat.2014.05.011Cheah, S. K., Massin, L., Aouine, M., Steil, M. C., Fouletier, J., & Gélin, P. (2018). Methane steam reforming in water deficient conditions on Ir/Ce0.9Gd0.1O2-x catalyst: Metal-support interactions and catalytic activity enhancement. Applied Catalysis B: Environmental, 234, 279-289. doi:10.1016/j.apcatb.2018.04.048Bartholomew, C. H. (1982). Carbon Deposition in Steam Reforming and Methanation. Catalysis Reviews, 24(1), 67-112. doi:10.1080/03602458208079650M. P. Pechini Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor 1967 US3330697 A.Petříček, V., Dušek, M., & Palatinus, L. (2014). Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials, 229(5). doi:10.1515/zkri-2014-173

    Current situation of Phyllitis scolopendrium in the Serra de Mariola Natural Park

    Get PDF
    Es dóna referència de la primera població d’esta rara espècie trobada al P.N. de la Serra de Mariola, i es fan alguns comentaris sobre la seua distribució i ecologia.Se refiere el hallazgo de la primera población de esta rara especie en el P.N. de la Serra de Mariola, y se realizan algunos comentarios sobre su distribución y ecología.The discovery of the first population of this rare species refers in the PN Serra de Mariola, and some comments on their distribution and ecology are made
    corecore