52 research outputs found

    Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis

    Get PDF
    The ÎŒ2 subunit of the AP2 complex is known to be phosphorylated in vitro by a copurifying kinase, and it has been demonstrated recently that ÎŒ2 phosphorylation is required for transferrin endocytosis (Olusanya, O., P.D. Andrews, J.R. Swedlow, and E. Smythe. 2001. Curr. Biol. 11:896–900). However, the identity of the endogenous kinase responsible for this phosphorylation is unknown. Here we identify and characterize a novel member of the Prk/Ark family of serine/threonine kinases, adaptor-associated kinase (AAK)1. We find that AAK1 copurifies with adaptor protein (AP)2 and that it directly binds the ear domain of α-adaptin in vivo and in vitro. In neuronal cells, AAK1 is enriched at presynaptic terminals, whereas in nonneuronal cells it colocalizes with clathrin and AP2 in clathrin-coated pits and at the leading edge of migrating cells. AAK1 specifically phosphorylates the ÎŒ subunit in vitro, and stage-specific assays for endocytosis show that ÎŒ phosphorylation by AAK1 results in a decrease in AP2-stimulated transferrin internalization. Together, these results provide strong evidence that AAK1 is the endogenous ÎŒ2 kinase and plays a regulatory role in clathrin-mediated endocytosis. These results also lend support to the idea that clathrin-mediated endocytosis is controlled by cycles of phosphorylation/desphosphorylation

    Differential requirements for AP-2 in clathrin-mediated endocytosis

    Get PDF
    AP-2 complexes are key components in clathrin-mediated endocytosis (CME). They trigger clathrin assembly, interact directly with cargo molecules, and recruit a number of endocytic accessory factors. Adaptor-associated kinase (AAK1), an AP-2 binding partner, modulates AP-2 function by phosphorylating its Ό2 subunit. Here, we examined the effects of adenoviral-mediated overexpression of WT AAK1, kinase-dead, and truncation mutants in HeLa cells, and show that AAK1 also regulates AP-2 function in vivo. WT AAK1 overexpression selectively blocks transferrin (Tfn) receptor and LRP endocytosis. Inhibition was kinase independent, but required the full-length AAK1 as truncation mutants were not inhibitory. Although changes in Ό2 phosphorylation were not detected, AAK1 overexpression significantly decreased the phosphorylation of large adaptin subunits and the normally punctate AP-2 distribution was dispersed, suggesting that AAK1 overexpression inhibited Tfn endocytosis by functionally sequestering AP-2. Surprisingly, clathrin distribution and EGF uptake were unaffected by AAK1 overexpression. Thus, AP-2 may not be stoichiometrically required for coat assembly, and may have a more cargo-selective function in CME than previously thought

    Long-term outcomes in patients with type 2 diabetes receiving glimepiride combined with liraglutide or rosiglitazone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poor control of type 2 diabetes results in substantial long-term consequences. Studies of new diabetes treatments are rarely designed to assess mortality, complication rates and costs. We sought to estimate the long-term consequences of liraglutide and rosiglitazone both added to glimepiride.</p> <p>Methods</p> <p>To estimate long-term clinical and economic consequences, we used the CORE diabetes model, a validated cohort model that uses epidemiologic data from long-term clinical trials to simulate morbidity, mortality and costs of diabetes. Clinical data were extracted from the LEAD-1 trial evaluating two doses (1.2 mg and 1.8 mg) of a once daily GLP-1 analog liraglutide, or rosiglitazone 4 mg, on a background of glimepiride in type 2 diabetes. CORE was calibrated to the LEAD-1 baseline patient characteristics. Survival, cumulative incidence of cardiovascular, ocular and renal events and healthcare costs were estimated over three periods: 10, 20 and 30 years.</p> <p>Results</p> <p>In a hypothetical cohort of 5000 patients per treatment followed for 30 years, liraglutide 1.2 mg and 1.8 mg had higher survival rates compared to the group treated with rosiglitazone (15.0% and 16.0% vs. 12.6% after 30 years), and fewer cardiovascular, renal, and ocular events. Cardiovascular death rates after 30 years were 69.7%, 68.4% and 72.5%, for liraglutide 1.2 mg, 1.8 mg, and rosiglitazone, respectively. First and recurrent amputations were lower in the rosiglitazone group, probably due to a 'survival paradox' in the liraglutide arms (number of events: 565, 529, and 507, respectively). Overall cumulative costs per patient, were lower in both liraglutide groups compared to rosiglitazone (US38,963,38,963, 39,239, and $40,401 for liraglutide 1.2 mg, 1.8 mg, and rosiglitazone, respectively), mainly driven by the costs of cardiovascular events in all groups.</p> <p>Conclusion</p> <p>Using data from LEAD-1 and epidemiologic evidence from the CORE diabetes model, projected rates of mortality, diabetes complications and healthcare costs over the long term favor liraglutide plus glimepiride over rosiglitazone plus glimepiride.</p> <p>Trial registration</p> <p>LEAD-1 NCT00318422; LEAD-2 NCT00318461; LEAD-3 NCT 00294723; LEAD-4 NCT00333151; LEAD-5 NCT00331851; LEAD-6 NCT00518882.</p

    AAK1 Identified as an Inhibitor of Neuregulin-1/ErbB4-Dependent Neurotrophic Factor Signaling Using Integrative Chemical Genomics and Proteomics

    Get PDF
    SummaryTarget identification remains challenging for the field of chemical biology. We describe an integrative chemical genomic and proteomic approach combining the use of differentially active analogs of small molecule probes with stable isotope labeling by amino acids in cell culture-mediated affinity enrichment, followed by subsequent testing of candidate targets using RNA interference-mediated gene silencing. We applied this approach to characterizing the natural product K252a and its ability to potentiate neuregulin-1 (Nrg1)/ErbB4 (v-erb-a erythroblastic leukemia viral oncogene homolog 4)-dependent neurotrophic factor signaling and neuritogenesis. We show that AAK1 (adaptor-associated kinase 1) is a relevant target of K252a, and that the loss of AAK1 alters ErbB4 trafficking and expression levels, providing evidence for a previously unrecognized role for AAK1 in Nrg1-mediated neurotrophic factor signaling. Similar strategies should lead to the discovery of novel targets for therapeutic development

    Supporting genetics in primary care: investigating how theory can inform professional education

    Get PDF
    Evidence indicates that many barriers exist to the integration of genetic case finding into primary care. We conducted an exploratory study of the determinants of three specific behaviours related to using breast cancer genetics referral guidelines effectively: 'taking a family history', 'making a risk assessment', and 'making a referral decision'. We developed vignettes of primary care consultations with hypothetical patients, representing a wide range of genetic risk for which different referral decisions would be appropriate. We used the Theory of Planned Behavior to develop a survey instrument to capture data on behavioural intention and its predictors (attitude, subjective norm, and perceived behavioural control) for each of the three behaviours and mailed it to a sample of Canadian family physicians. We used correlation and regression analyses to explore the relationships between predictor and dependent variables. The response rate was 96/125 (77%). The predictor variables explained 38-83% of the variance in intention across the three behaviours. Family physicians' intentions were lower for 'making a risk assessment' (perceived as the most difficult) than for the other two behaviours. We illustrate how understanding psychological factors salient to behaviour can be used to tailor professional educational interventions; for example, considering the approach of behavioural rehearsal to improve confidence in skills (perceived behavioural control), or vicarious reinforcement as where participants are sceptical that genetics is consistent with their role (subjective norm)

    Movement and habitat use of the snapping turtle in an urban landscape

    Get PDF
    In order to effectively manage urban habitats, it is important to incorporate the spatial ecology and habitat use of the species utilizing them. Our previous studies have shown that the distribution of upland habitats surrounding a highly urbanized wetland habitat, the Central Canal (Indianapolis, IN, USA) influences the distribution of map turtles (Graptemys geographica) and red-eared sliders (Trachemys scripta) during both the active season and hibernation. In this study we detail the movements and habitat use of another prominent member of the Central Canal turtle assemblage, the common snapping turtle, Chelydra serpentina. We find the same major upland habitat associations for C. serpentina as for G. geographica and T. scripta, despite major differences in their activity (e.g., C. serpentina do not regularly engage in aerial basking). These results reinforce the importance of recognizing the connection between aquatic and surrounding terrestrial habitats, especially in urban ecosystems

    Are we ready to track climate-driven shifts in marine species across international boundaries? - A global survey of scientific bottom trawl data

    Get PDF
    Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. Given that the primary purpose of surveys is to provide independent data to inform stock assessment of commercially important populations, we further highlight that single surveys do not cover the full range of the main commercial demersal fish species. An average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.En prensa6,86

    Overcoming leakage in scalable quantum error correction

    Full text link
    Leakage of quantum information out of computational states into higher energy states represents a major challenge in the pursuit of quantum error correction (QEC). In a QEC circuit, leakage builds over time and spreads through multi-qubit interactions. This leads to correlated errors that degrade the exponential suppression of logical error with scale, challenging the feasibility of QEC as a path towards fault-tolerant quantum computation. Here, we demonstrate the execution of a distance-3 surface code and distance-21 bit-flip code on a Sycamore quantum processor where leakage is removed from all qubits in each cycle. This shortens the lifetime of leakage and curtails its ability to spread and induce correlated errors. We report a ten-fold reduction in steady-state leakage population on the data qubits encoding the logical state and an average leakage population of less than 1×10−31 \times 10^{-3} throughout the entire device. The leakage removal process itself efficiently returns leakage population back to the computational basis, and adding it to a code circuit prevents leakage from inducing correlated error across cycles, restoring a fundamental assumption of QEC. With this demonstration that leakage can be contained, we resolve a key challenge for practical QEC at scale.Comment: Main text: 7 pages, 5 figure
    • 

    corecore