18 research outputs found

    The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis

    Get PDF
    Background: Globally, the population of adolescents living with perinatally acquired HIV (APHs) continues to expand. In this study, we pooled data from observational pediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in "real-life" settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APHs across multiple regions, including South America and the Caribbean, North America, Europe, sub-Saharan Africa, and South and Southeast Asia. Methods and findings: Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All children infected with HIV who entered care before age 10 years, were not known to have horizontally acquired HIV, and were followed up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APHs at key time points, including first HIV-associated clinic visit, antiretroviral therapy (ART) start, age 10 years, and last visit, and compares these characteristics by geographic region, country income group (CIG), and birth period. Our secondary analysis describes mortality, transfer out, and lost to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APHs included, 51% were female, 79% were from sub-Saharan Africa and 65% lived in low-income countries. APHs from 51 countries were included (Europe: 14 countries and 3,054 APHs; North America: 1 country and 1,032 APHs; South America and the Caribbean: 4 countries and 903 APHs; South and Southeast Asia: 7 countries and 2,902 APHs; sub-Saharan Africa, 25 countries and 30,296 APHs). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa, and continued until at least 2014 in all regions. The median (interquartile range [IQR]) duration of adolescent follow-up was 3.1 (1.5-5.2) years for the total cohort and 6.4 (3.6-8.0) years in Europe, 3.7 (2.0-5.4) years in North America, 2.5 (1.2-4.4) years in South and Southeast Asia, 5.0 (2.7-7.5) years in South America and the Caribbean, and 2.1 (0.9-3.8) years in sub-Saharan Africa. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3-2.1) years in North America to 7.1 (5.3-8.6) years in sub-Saharan Africa. The median age at ART start varied from 0.9 (0.4-2.6) years in North America to 7.9 (6.0-9.3) years in sub-Saharan Africa. The cumulative incidence estimates (95% confidence interval [CI]) at age 15 years for mortality, transfers out, and LTFU for all APHs were 2.6% (2.4%-2.8%), 15.6% (15.1%-16.0%), and 11.3% (10.9%-11.8%), respectively. Mortality was lowest in Europe (0.8% [0.5%-1.1%]) and highest in South America and the Caribbean (4.4% [3.1%-6.1%]). However, LTFU was lowest in South America and the Caribbean (4.8% [3.4%-6.7%]) and highest in sub-Saharan Africa (13.2% [12.6%-13.7%]). Study limitations include the high LTFU rate in sub-Saharan Africa, which could have affected the comparison of mortality across regions; inclusion of data only for APHs receiving ART from some countries; and unavailability of data from high-burden countries such as Nigeria. Conclusion: To our knowledge, our study represents the largest multiregional epidemiological analysis of APHs. Despite probable under-ascertained mortality, mortality in APHs remains substantially higher in sub-Saharan Africa, South and Southeast Asia, and South America and the Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses.info:eu-repo/semantics/publishedVersio

    The epidemiology of adolescents living with perinatally acquired HIV: A cross-region global cohort analysis

    Get PDF
    Background Globally, the population of adolescents living with perinatally acquired HIV (APHs) continues to expand. In this study, we pooled data from observational pediatric HIV cohorts and cohort networks, allowing comparisons of adolescents with perinatally acquired HIV in “real-life” settings across multiple regions. We describe the geographic and temporal characteristics and mortality outcomes of APHs across multiple regions, including South America and the Caribbean, North America, Europe, sub-Saharan Africa, and South and Southeast Asia. Methods and findings Through the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER), individual retrospective longitudinal data from 12 cohort networks were pooled. All children infected with HIV who entered care before age 10 years, were not known to have horizontally acquired HIV, and were followed up beyond age 10 years were included in this analysis conducted from May 2016 to January 2017. Our primary analysis describes patient and treatment characteristics of APHs at key time points, including first HIV-associated clinic visit, antiretroviral therapy (ART) start, age 10 years, and last visit, and compares these characteristics by geographic region, country income group (CIG), and birth period. Our secondary analysis describes mortality, transfer out, and lost to follow-up (LTFU) as outcomes at age 15 years, using competing risk analysis. Among the 38,187 APHs included, 51% were female, 79% were from sub-Saharan Africa and 65% lived in low-income countries. APHs from 51 countries were included (Europe: 14 countries and 3,054 APHs; North America: 1 country and 1,032 APHs; South America and the Caribbean: 4 countries and 903 APHs; South and Southeast Asia: 7 countries and 2,902 APHs; sub-Saharan Africa, 25 countries and 30,296 APHs). Observation started as early as 1982 in Europe and 1996 in sub-Saharan Africa, and continued until at least 2014 in all regions. The median (interquartile range [IQR]) duration of adolescent follow-up was 3.1 (1.5–5.2) years for the total cohort and 6.4 (3.6–8.0) years in Europe, 3.7 (2.0–5.4) years in North America, 2.5 (1.2–4.4) years in South and Southeast Asia, 5.0 (2.7–7.5) years in South America and the Caribbean, and 2.1 (0.9–3.8) years in sub-Saharan Africa. Median (IQR) age at first visit differed substantially by region, ranging from 0.7 (0.3–2.1) years in North America to 7.1 (5.3–8.6) years in sub-Saharan Africa. The median age at ART start varied from 0.9 (0.4–2.6) years in North America to 7.9 (6.0–9.3) years in sub-Saharan Africa. The cumulative incidence estimates (95% confidence interval [CI]) at age 15 years for mortality, transfers out, and LTFU for all APHs were 2.6% (2.4%–2.8%), 15.6% (15.1%–16.0%), and 11.3% (10.9%–11.8%), respectively. Mortality was lowest in Europe (0.8% [0.5%–1.1%]) and highest in South America and the Caribbean (4.4% [3.1%–6.1%]). However, LTFU was lowest in South America and the Caribbean (4.8% [3.4%–6.7%]) and highest in sub-Saharan Africa (13.2% [12.6%–13.7%]). Study limitations include the high LTFU rate in sub-Saharan Africa, which could have affected the comparison of mortality across regions; inclusion of data only for APHs receiving ART from some countries; and unavailability of data from high-burden countries such as Nigeria. Conclusion To our knowledge, our study represents the largest multiregional epidemiological analysis of APHs. Despite probable under-ascertained mortality, mortality in APHs remains substantially higher in sub-Saharan Africa, South and Southeast Asia, and South America and the Caribbean than in Europe. Collaborations such as CIPHER enable us to monitor current global temporal trends in outcomes over time to inform appropriate policy responses

    Emulating a trial of joint dynamic strategies: An application to monitoring and treatment of HIV-positive individuals

    Get PDF
    Decisions about when to start or switch a therapy often depend on the frequency with which individuals are monitored or tested. For example, the optimal time to switch antiretroviral therapy depends on the frequency with which HIV-positive individuals have HIV RNA measured. This paper describes an approach to use observational data for the comparison of joint monitoring and treatment strategies and applies the method to a clinically relevant question in HIV research: when can monitoring frequency be decreased and when should individuals switch from a first-line treatment regimen to a new regimen?. We outline the target trial that would compare the dynamic strategies of interest and then describe how to emulate it using data from HIV-positive individuals included in the HIV-CAUSAL Collaboration and the Centers for AIDS Research Network of Integrated Clinical Systems. When, as in our example, few individuals follow the dynamic strategies of interest over long periods of follow-up, we describe how to leverage an additional assumption: no direct effect of monitoring on the outcome of interest. We compare our results with and without the “no direct effect†assumption. We found little differences on survival and AIDS-free survival between strategies where monitoring frequency was decreased at a CD4 threshold of 350 cells/μl compared with 500 cells/μl and where treatment was switched at an HIV-RNA threshold of 1000 copies/ml compared with 200 copies/ml. The “no direct effect†assumption resulted in efficiency improvements for the risk difference estimates ranging from an 7- to 53-fold increase in the effective sample size

    Growth and CD4 patterns of adolescents living with perinatally acquired HIV worldwide, a CIPHER cohort collaboration analysis

    Get PDF
    Introduction: Adolescents living with HIV are subject to multiple co-morbidities, including growth retardation and immunodeficiency. We describe growth and CD4 evolution during adolescence using data from the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) global project. Methods: Data were collected between 1994 and 2015 from 11 CIPHER networks worldwide. Adolescents with perinatally acquired HIV infection (APH) who initiated antiretroviral therapy (ART) before age 10 years, with at least one height or CD4 count measurement while aged 10–17 years, were included. Growth was measured using height-for-age Z-scores (HAZ, stunting if <-2 SD, WHO growth charts). Linear mixed-effects models were used to study the evolution of each outcome between ages 10 and 17. For growth, sex-specific models with fractional polynomials were used to model non-linear relationships for age at ART initiation, HAZ at age 10 and time, defined as current age from 10 to 17 years of age. Results: A total of 20,939 and 19,557 APH were included for the growth and CD4 analyses, respectively. Half were females, two-thirds lived in East and Southern Africa, and median age at ART initiation ranged from <3 years in North America and Europe to >7 years in sub-Saharan African regions. At age 10, stunting ranged from 6% in North America and Europe to 39% in the Asia-Pacific; 19% overall had CD4 counts <500 cells/mm3. Across adolescence, higher HAZ was observed in females and among those in high-income countries. APH with stunting at age 10 and those with late ART initiation (after age 5) had the largest HAZ gains during adolescence, but these gains were insufficient to catch-up with non-stunted, early ART-treated adolescents. From age 10 to 16 years, mean CD4 counts declined from 768 to 607 cells/mm3. This decline was observed across all regions, in males and females. Conclusions: Growth patterns during adolescence differed substantially by sex and region, while CD4 patterns were similar, with an observed CD4 decline that needs further investigation. Early diagnosis and timely initiation of treatment in early childhood to prevent growth retardation and immunodeficiency are critical to improving APH growth and CD4 outcomes by the time they reach adulthood

    A case study and proposal for publishing directed acyclic graphs: The effectiveness of the quadrivalent HPV vaccine in perinatally HIV infected girls

    No full text
    Background: Developing a causal graph is an important step in etiologic research planning and can be used to highlight data flaws and irreparable bias and confounding. As a case study, we consider recent findings that suggest human papillomavirus (HPV) vaccine is less effective against HPV-associated disease among girls living with HIV compared to girls without HIV. Objectives: To understand the relationship between HIV status and HPV vaccine effectiveness, it is important to outline the key assumptions of the causal mechanisms before designing a study to investigate the effect of the HPV vaccine in girls living with HIV infection. Methods: We present a causal graph to describe our assumptions and proposed approach to explore this relationship. We hope to obtain feedback on our assumptions prior to data analysis and exemplify the process for designing causal graphs to inform an etiologic study. Conclusion: The approach we lay out in this paper may be useful for other researchers who have an interest in using causal graphs to describe and assess assumptions in their own research prior to undergoing data collection and/or analysis

    Stat Med

    No full text
    Decisions about when to start or switch a therapy often depend on the frequency with which individuals are monitored or tested. For example, the optimal time to switch antiretroviral therapy depends on the frequency with which HIV-positive individuals have HIV RNA measured. This paper describes an approach to use observational data for the comparison of joint monitoring and treatment strategies and applies the method to a clinically relevant question in HIV research: when can monitoring frequency be decreased and when should individuals switch from a first-line treatment regimen to a new regimen? We outline the target trial that would compare the dynamic strategies of interest and then describe how to emulate it using data from HIV-positive individuals included in the HIV-CAUSAL Collaboration and the Centers for AIDS Research Network of Integrated Clinical Systems. When, as in our example, few individuals follow the dynamic strategies of interest over long periods of follow-up, we describe how to leverage an additional assumption: no direct effect of monitoring on the outcome of interest. We compare our results with and without the "no direct effect" assumption. We found little differences on survival and AIDS-free survival between strategies where monitoring frequency was decreased at a CD4 threshold of 350 cells/mul compared with 500 cells/mul and where treatment was switched at an HIV-RNA threshold of 1000 copies/ml compared with 200 copies/ml. The "no direct effect" assumption resulted in efficiency improvements for the risk difference estimates ranging from an 7- to 53-fold increase in the effective sample size

    Comparison of dynamic monitoring strategies based on CD4 cell counts in virally suppressed, HIV-positive individuals on combination antiretroviral therapy in high-income countries: a prospective, observational study

    No full text
    Background Clinical guidelines vary with respect to the optimal monitoring frequency of HIV-positive individuals. We compared dynamic monitoring strategies based on time-varying CD4 cell counts in virologically suppressed HIV-positive individuals. Methods In this observational study, we used data from prospective studies of HIV-positive individuals in Europe (France, Greece, the Netherlands, Spain, Switzerland, and the UK) and North and South America (Brazil, Canada, and the USA) in The HIV-CAUSAL Collaboration and The Centers for AIDS Research Network of Integrated Clinical Systems. We compared three monitoring strategies that differ in the threshold used to measure CD4 cell count and HIV RNA viral load every 3-6 months (when below the threshold) or every 9-12 months (when above the threshold). The strategies were defined by the threshold CD4 counts of 200 cells per mu L, 350 cells per mu L, and 500 cells per mu L. Using inverse probability weighting to adjust for baseline and time-varying confounders, we estimated hazard ratios (HRs) of death and of AIDS-defining illness or death, risk ratios of virological failure, and mean differences in CD4 cell count. Findings 47 635 individuals initiated an antiretroviral therapy regimen between Jan 1, 2000, and Jan 9, 2015, and met the eligibility criteria for inclusion in our study. During follow-up, CD4 cell count was measured on average every 4.0 months and viral load every 3.8 months. 464 individuals died (107 in threshold 200 strategy, 157 in threshold 350, and 200 in threshold 500) and 1091 had AIDS-defining illnesses or died (267 in threshold 200 strategy, 365 in threshold 350, and 459 in threshold 500). Compared with threshold 500, the mortality HR was 1.05 (95% CI 0.86-1.29) for threshold 200 and 1.02 (0.91.1.14) for threshold 350. Corresponding estimates for death or AIDS-defining illness were 1.08 (0.95-1.22) for threshold 200 and 1.03 (0.96-1.12) for threshold 350. Compared with threshold 500, the 24 month risk ratios of virological failure (viral load more than 200 copies per mL) were 2.01 (1.17-3.43) for threshold 200 and 1.24 (0.89-1.73) for threshold 350, and 24 month mean CD4 cell count differences were 0.4 (-25.5 to 26.3) cells per mu L for threshold 200 and -3.5 (-16.0 to 8.9) cells per mu L for threshold 350. Interpretation Decreasing monitoring to annually when CD4 count is higher than 200 cells per mu L compared with higher than 500 cells per mu L does not worsen the short-term clinical and immunological outcomes of virally suppressed HIV-positive individuals. However, more frequent virological monitoring might be necessary to reduce the risk of virological failure. Further follow-up studies are needed to establish the long-term safety of these strategies
    corecore