765 research outputs found

    Photovoltaic water pumping applications: Assessment of the near-term market

    Get PDF
    Water pumping applications represent a potential market for photovoltaics. The price of energy for photovoltaic systems was compared to that of utility line extensions and diesel generators. The potential domestic demand was defined in the government, commercial/institutional and public sectors. The foreign demand and sources of funding for water pumping systems in the developing countries were also discussed briefly. It was concluded that a near term domestic market of at least 240 megawatts and a foreign market of about 6 gigawatts exist

    An investigation of the strength of a wooden schooner

    Get PDF
    Thesis (B.S.)--Massachusetts Institute of Technology, Dept. of Naval Architecture and Marine Engineering, 1903.by Oliver P. Scudder.B.S

    Non adiabatic electron behavior through a supercritical perpendicular collisionless shock: Impact of the shock front turbulence

    No full text
    International audienceAdiabatic and nonadiabatic electrons transmitted through a supercritical perpendicular shock wave are analyzed with the help of test particle simulations based on field components issued from 2 − D full-particle simulation. A previous analysis (Savoini et al., 2005) based on 1 − D shock profile, including mainly a ramp (no apparent foot) and defined at a fixed time, has identified three distinct electron populations: adiabatic, overadiabatic, and underadiabatic, respectively, identified by μds/μus ≈ 1, >1 and <1, where μus and μds are the magnetic momenta in the upstream and downstream regions. Presently, this study is extended by investigating the impact of the time evolution of 2 − D shock front dynamics on these three populations. Analysis of individual time particle trajectories is performed and completed by statistics based on the use of different upstream velocity distributions (spherical shell of radius vshell and a Maxwellian with thermal velocity vthe). In all statistics, the three electron populations are clearly recovered. Two types of shock front nonstationarity are analyzed. First, the impact of the nonstationarity along the shock normal (due to the front self-reformation only) strongly depends on the values of vshell or vthe. For low values, the percentages of adiabatic and overadiabatic electrons are almost comparable but become anticorrelated under the filtering impact of the self-reformation; the percentage of the underadiabatic population remains almost unchanged. In contrast, for large values, this impact becomes negligible and the adiabatic population alone becomes dominant. Second, when 2 − D nonstationarity effects along the shock front (moving rippling) are fully included, all three populations are strongly diffused, leading to a larger heating; the overadiabatic population becomes largely dominant (and even larger than the adiabatic one) and mainly contributes to the energy spectrum

    Large parallel and perpendicular electric fields on electron spatial scales in the terrestrial bow shock

    Get PDF
    Large parallel (\leq 100 mV/m) and perpendicular (\leq 600 mV/m) electric fields were measured in the Earth's bow shock by the vector electric field experiment on the Polar satellite. These are the first reported direct measurements of parallel electric fields in a collisionless shock. These fields exist on spatial scales comparable to or less than the electron skin depth (a few kilometers) and correspond to magnetic field-aligned potentials of tens of volts and perpendicular potentials up to a kilovolt. The perpendicular fields are amongst the largest ever measured in space, with energy densities of ϵ0E2/nkbTe\epsilon_0 E^2/ n k_b T_e of order 10%. The measured parallel electric field implies that the electrons can be demagnetized, which may result in stochastic (rather than coherent) electron heating

    MeV magnetosheath ions energized at the bow shock

    Get PDF
    A causal relationship between midlatitude magnetosheath energetic ions and bow shock magnetic geometry was previously established for ion energy up to 200 keV e−1 for the May 4, 1998, storm event. This study demonstrates that magnetosheath ions with energies above 200 keV up to 1 MeV simply extend the ion spectrum to form a power law tail. Results of cross-correlation analysis suggest that these ions also come directly from the quasi-parallel bow shock, not the magnetosphere. This is confirmed by a comparison of energetic ion fluxes simultaneously measured in the magnetosheath and at the quasi-parallel bow shock when both regions are likely connected by the magnetic field lines. We suggest that ions are accelerated at the quasi-parallel bow shock to energies as high as 1 MeV and subsequently transported into the magnetosheath during this event

    Cusp energetic ions: A bow shock source

    Get PDF
    Recent interpretations of cusp energetic ions observed by the POLAR spacecraft have suggested a new energization process in the cusp [Chen et al., 1997; 1998]. Simultaneous enhancement of H+, He+2, and O\u3e+2 fluxes indicates that they are of solar wind origin. In the present study, we examine H+ and He+2 energy spectra from 20 eV to several 100 keV measured by the Hydra, Toroidal Imaging Mass-Angle Spectrograph (TIMAS), and Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE) on POLAR. The combined spectrum for each species is shown to be continuous with a thermal distribution below 10 keV/e and an energetic component above 20 keV/e. Energetic ions with comparable fluxes and a similar spectral shape are commonly observed downstream from the Earth\u27s quasi-parallel (Q∥) bow shock. In addition to the similarity in the ion spectra, electric and magnetic field noise and turbulence detected in the cusp by the Plasma Wave Instrument (PWI) and Magnetic Field Experiment (MFE) onboard POLAR are similar to the previously reported observations at the bow shock. The waves appear to be coincidental to the cusp energetic ions rather than causal. We suggest that these ions are not accelerated locally in the cusp. Rather, they are accelerated at the Q∥ bow shock and enter the cusp along open magnetic field lines connecting both regions
    corecore