124 research outputs found

    Shared Ageing Research Models (ShARM) : a new facility to support ageing research

    Get PDF
    In order to manage the rise in life expectancy and the concomitant increased occurrence of age-related diseases, research into ageing has become a strategic priority. Mouse models are commonly utilised as they share high homology with humans and show many similar signs and diseases of ageing. However, the time and cost needed to rear aged cohorts can limit research opportunities. Sharing of resources can provide an ethically and economically superior framework to overcome some of these issues but requires dedicated infrastructure. Shared Ageing Research Models (ShARM) (www.ShARMUK.org) is a new, not-for-profit organisation funded by Wellcome Trust, open to all investigators. It collects, stores and distributes flash frozen tissues from aged murine models through its biorepository and provides a database of live ageing mouse colonies available in the UK and abroad. It also has an online environment (MICEspace) for collation and analysis of data from communal models and discussion boards on subjects such as the welfare of ageing animals and common endpoints for intervention studies. Since launching in July 2012, thanks to the generosity of researchers in UK and Europe, ShARM has collected more than 2,500 tissues and has in excess of 2,000 mice registered in live ageing colonies. By providing the appropriate support, ShARM has been able to bring together the knowledge and experience of investigators in the UK and Europe to maximise research outputs with little additional cost and minimising animal use in order to facilitate progress in ageing research

    Developing a collaborative agenda for humanities and social scientific research on laboratory animal science and welfare.

    Get PDF
    Improving laboratory animal science and welfare requires both new scientific research and insights from enquiry in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they frame questions, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process underlines the value of interdisciplinary exchange for improving mutual understanding of different research cultures and identifies ways of enhancing the effectiveness of future research at the interface between the humanities, social sciences, science and science policy

    Inactivation of class II PI3K-C2 alpha induces leptin resistance, age-dependent insulin resistance and obesity in male mice

    Get PDF
    AIMS/HYPOTHESIS: While the class I phosphoinositide 3-kinases (PI3Ks) are well-documented positive regulators of metabolism, the involvement of class II PI3K isoforms (PI3K-C2α, -C2β and -C2γ) in metabolic regulation is just emerging. Organismal inactivation of PI3K-C2β increases insulin signalling and sensitivity, whereas PI3K-C2γ inactivation has a negative metabolic impact. In contrast, the role of PI3K-C2α in organismal metabolism remains unexplored. In this study, we investigated whether kinase inactivation of PI3K-C2α affects glucose metabolism in mice. METHODS: We have generated and characterised a mouse line with a constitutive inactivating knock-in (KI) mutation in the kinase domain of the gene encoding PI3K-C2α (Pik3c2a). RESULTS: While homozygosity for kinase-dead PI3K-C2α was embryonic lethal, heterozygous PI3K-C2α KI mice were viable and fertile, with no significant histopathological findings. However, male heterozygous mice showed early onset leptin resistance, with a defect in leptin signalling in the hypothalamus, correlating with a mild, age-dependent obesity, insulin resistance and glucose intolerance. Insulin signalling was unaffected in insulin target tissues of PI3K-C2α KI mice, in contrast to previous reports in which downregulation of PI3K-C2α in cell lines was shown to dampen insulin signalling. Interestingly, no metabolic phenotypes were detected in female PI3K-C2α KI mice at any age. CONCLUSIONS/INTERPRETATION: Our data uncover a sex-dependent role for PI3K-C2α in the modulation of hypothalamic leptin action and systemic glucose homeostasis. ACCESS TO RESEARCH MATERIALS: All reagents are available upon request

    Impact of food processing and detoxification treatments on mycotoxin contamination

    Get PDF

    Environmental Geotechnics: Challenges and Opportunities in the Post COVID-19 World

    Get PDF
    The outbreak of the COVID-19 pandemic not only created a health crisis across the world but is expected to negatively impact the global economy and societies at a scale that maybe larger than the 2008 financial crisis. Simultaneously, it has inevitably exerted many negative consequences on the geoenvironment upon which human beings depend. The current article articulates the role of environmental geotechnics to elucidate and mitigate the effects of the current pandemic. It is the belief of all authors that the COVID-19 pandemic presents significant challenges, but also opportunities for the development of our field. Our discipline should make full use of our professional skills and expertise to look for development opportunities from this crisis, to highlight our discipline’s irreplaceable position in the global fight against pandemics, and to contribute to the health and prosperity of our communities, so as to better serve humankind. In order to reach this goal, while taking into account the specificity of the SARS-CoV-2 and the uncertainty of its environmental effects, it is believed that more emphasis should be placed on the following research directions: pathogen-soil interactions, isolation and remediation technologies for pathogen-contaminated sites, new materials for pathogen-contaminated soil, recycling and safe disposal of medical wastes, quantification of uncertainty in geoenvironmental and epidemiological problems, emerging technologies and adaptation strategies in civil, geotechnical, and geoenvironmental infrastructure, pandemic-induced environmental risk management, and model pathogen transport and fate in geoenvironment, among others. Moreover, COVID-19 has made it clear to the environmental geotechnics community the importance of urgent international cooperation and of multidisciplinary research actions that must extend to a broad range of scientific fields, including medical and public health disciplines, in order to meet the complexities posed by the COVID-19 pandemic

    Conservative Surgery for Menorrhagia.

    No full text
    corecore