94 research outputs found

    Measuring Space-Time Geometry over the Ages

    Full text link
    Theorists are often told to express things in the "observational plane". One can do this for space-time geometry, considering "visual" observations of matter in our universe by a single observer over time, with no assumptions about isometries, initial conditions, nor any particular relation between matter and geometry, such as Einstein's equations. Using observables as coordinates naturally leads to a parametrization of space-time geometry in terms of other observables, which in turn prescribes an observational program to measure the geometry. Under the assumption of vorticity-free matter flow we describe this observational program, which includes measurements of gravitational lensing, proper motion, and redshift drift. Only 15% of the curvature information can be extracted without long time baseline observations, and this increases to 35% with observations that will take decades. The rest would likely require centuries of observations. The formalism developed is exact, non-perturbative, and more general than the usual cosmological analysis.Comment: Originally written for the Gravity Research Foundation 2012 Awards for Essays on Gravitation and received Honorable Mentio

    The Development of Speech-Language Pathologists’ Counseling Self-Efficacy

    Get PDF
    The purpose of this investigation was to understand, from the perspective of speech-language pathologists (SLPs), what factors contribute to the essential structure of the experience of SLPs with low perceived counseling self-efficacy (CSE), the factors that contribute to the essential structure of the experience of SLPs with high perceived CSE, and how SLPs can transition from lower to higher perceived CSE. Ten female speech-language pathologists participated in interviews to discuss their counseling experiences and the development of their personal SLP CSE. The interviews were divided into 982 meaning units. The meaning units were categorized to determine the recurring themes contributing to the essential structure of low and high SLP CSE and to determine how the transition from low to high CSE occurs. Four recurring themes associated with low CSE were identified, including: (a) lack of knowledge, (b) lack of experience, (c) lack of feedback from others, and (d) personal attributes. Seven recurring themes associated with high CSE were identified, including: (a) experience, (b) situation-specific confidence, (c) experiences of success, (d) life experiences, (e) observation of others, (f) feedback from others, and (g) personal attributes. Four themes associated with perceived needs and resources for continued CSE growth were identified, including: (a) further counseling training, (b) feedback from others, (c) experience, and (d) self-reflection. Further, it was found that internal locus of control was associated with higher levels of CSE

    Order statistics of the early-type galaxy luminosity function

    Get PDF
    We apply order statistics (OS) to the bright end (Mr<22M_r < -22) of the luminosity distribution of early-type galaxies spectroscopically identified in the SDSS DR7 catalog. We calculate the typical OS quantities of this distribution numerically, measuring the expectation value and variance of the kthk^{th} most luminous galaxy in a sample with cardinality NN over a large ensemble of such samples. From these statistical quantities we explain why and in what limit the kthk^{th} most luminous galaxies can be used as standard candles for cosmological studies. Since our sample contains all bright galaxies including the brightest cluster galaxies (BCG), based on OS we argue that BCGs can be considered as statistical extremes of a well-established Schechter luminosity distribution when galaxies are binned by redshift and not cluster-by-cluster. We presume that the reason behind this might be that luminous red ellipticals in galaxy clusters are \em not random \em samples of an overall luminosity distribution but biased by the fact that they are in a cluster containing the BCG. We show that a simple statistical toy model can reproduce the well-known magnitude gap between the BCG and the second brightest galaxy of the clusters

    The luminosities of the brightest cluster galaxies and brightest satellites in SDSS groups

    Full text link
    We show that the distribution of luminosities of Brightest Cluster Galaxies in an SDSS-based group catalog suggests that BCG luminosities are just the statistical extremes of the group galaxy luminosity function. This latter happens to be very well approximated by the all-galaxy luminosity function (restricted to Mr<-19.9), provided one uses a parametrization of this function that is accurate at the bright end. A similar analysis of the luminosity distribution of the Brightest Satellite Galaxies suggests that they are best thought of as being the second brightest pick from the same luminosity distribution of which BCGs are the brightest. I.e., BSGs are not the brightest of some universal satellite luminosity function, in contrast to what Halo Model analyses of the luminosity dependence of clustering suggest. However, we then use mark correlations to provide a novel test of these order statistics, showing that the hypothesis of a universal luminosity function (i.e. no halo mass dependence) from which the BCGs and BSGs are drawn is incompatible with the data, despite the fact that there was no hint of this in the BCG and BSG luminosity distributions themselves. We also discuss why, since extreme value statistics are explicitly a function of the number of draws, the consistency of BCG luminosities with extreme value statistics is most clearly seen if one is careful to perform the test at fixed group richness N. Tests at, e.g., fixed total group luminosity Ltot, will generally be biased and may lead to erroneous conclusions.Comment: 12 pages, 9 figures; v2 -- Revised to match version accepted in MNRAS. Includes a new section on using mark correlations to test extreme value statistic

    A Century of Cosmology

    Full text link
    In the century since Einstein's anno mirabilis of 1905, our concept of the Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across to an observed horizon about 30 Gpc across that is only a tiny fraction of an immensely large inflated bubble. The expansion of our knowledge about the Universe, both in the types of data and the sheer quantity of data, has been just as dramatic. This talk will summarize this century of progress and our current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex with 2 figure

    A near-infrared morphological comparison of high-redshift submm and radio galaxies: massive star-forming discs vs relaxed spheroids

    Full text link
    We present deep, high-quality K-band images of complete subsamples of powerful radio and sub-mm galaxies at z=2. The data were obtained in the best available seeing at UKIRT and Gemini North, with integration times scaled to ensure that comparable rest-frame surface brightness levels are reached for all galaxies. We fit two-dimensional axi-symmetric galaxy models to determine galaxy morphologies at rest-frame optical wavelengths > 4000A, varying luminosity, axial ratio, half-light radius, and Sersic index. We find that, while some images show evidence of galaxy interactions, >95% of the rest-frame optical light in all galaxies is well-described by these simple models. We also find a clear difference in morphology between these two classes of galaxy; fits to the individual images and image stacks reveal that the radio galaxies are moderately large (=8.4+-1.1kpc; median r{1/2}=7.8), de Vaucouleurs spheroids ( = 4.07+-0.27; median n=3.87), while the sub-mm galaxies appear to be moderately compact (=3.4+-0.3kpc; median r{1/2}=3.1kpc) exponential discs (=1.44+-0.16; median n=1.08). We show that the z=2 radio galaxies display a well-defined Kormendy relation but that, while larger than other recently-studied high-z massive galaxy populations, they are still ~1.5 times smaller than their local counterparts. The scalelengths of the starlight in the sub-mm galaxies are comparable to those reported for the molecular gas. Their sizes are also similar to those of comparably massive quiescent galaxies at z>1.5. In terms of stellar mass surface density, the majority of the radio galaxies lie within the locus defined by local ellipticals. In contrast, while best modelled as discs, most of the sub-mm galaxies have higher stellar mass densities than local galaxies, and appear destined to evolve into present-day massive ellipticals.Comment: 24 pages, 9 figure

    A Search for the Most Massive Galaxies. II. Structure, Environment and Formation

    Get PDF
    We study a sample of 43 early-type galaxies, selected from the SDSS because they appeared to have velocity dispersion > 350 km/s. High-resolution photometry in the SDSS i passband using HRC-ACS on board the HST shows that just less than half of the sample is made up of superpositions of two or three galaxies, so the reported velocity dispersion is incorrect. The other half of the sample is made up of single objects with genuinely large velocity dispersions. None of these objects has sigma larger than 426 +- 30 km/s. These objects define rather different relations than the bulk of the early-type galaxy population: for their luminosities, they are the smallest, most massive and densest galaxies in the Universe. Although the slopes of the scaling relations they define are rather different from those of the bulk of the population, they lie approximately parallel to those of the bulk "at fixed sigma". These objects appear to be of two distinct types: the less luminous (M_r>-23) objects are rather flattened and extremely dense for their luminosities -- their properties suggest some amount of rotational support and merger histories with abnormally large amounts of gaseous dissipation. The more luminous objects (M_r<-23) tend to be round and to lie in or at the centers of clusters. Their properties are consistent with the hypothesis that they are BCGs. Models in which BCGs form from predominantly radial mergers having little angular momentum predict that they should be prolate. If viewed along the major axis, such objects would appear to have abnormally large sigma for their sizes, and to be abnormally round for their luminosities. This is true of the objects in our sample once we account for the fact that the most luminous galaxies (M_r<-23.5), and BCGs, become slightly less round with increasing luminosity.Comment: 21 pages, 19 figures, accepted for publication in MNRA

    Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors

    Get PDF
    Presented in this paper is a Markov chain Monte Carlo (MCMC) routine for conducting coherent parameter estimation for interferometric gravitational wave observations of an inspiral of binary compact objects using data from multiple detectors. The MCMC technique uses data from several interferometers and infers all nine of the parameters (ignoring spin) associated with the binary system, including the distance to the source, the masses, and the location on the sky. The Metropolis-algorithm utilises advanced MCMC techniques, such as importance resampling and parallel tempering. The data is compared with time-domain inspiral templates that are 2.5 post-Newtonian (PN) in phase and 2.0 PN in amplitude. Our routine could be implemented as part of an inspiral detection pipeline for a world wide network of detectors. Examples are given for simulated signals and data as seen by the LIGO and Virgo detectors operating at their design sensitivity.Comment: 10 pages, 4 figure

    Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses

    Full text link
    We extend our theoretical computations for low-mass stars to intermediate-mass and massive stars, for which few databases exist in the literature. Evolutionary tracks and isochrones are computed from 2.50 to 20 solar masses for agrid of 37 chemical compositions with metal content Z between 0.0001 and 0.070 and helium content Y between 0.23 and 0.40. Synthetic TP-AGB models allow stellar tracks and isochrones to be extended until the end of the thermal pulses along the AGB. We provide software tools for the bidimensional interpolation (in Y and Z) of the isochrones. We present tracks for scaled-solar abundances and the corresponding isochrones from very old ages down to about 10 million years. The extension of the blue loops and the instability strip of Cepheid stars are compared and the Cepheid mass-discrepancy is discussed. The location of red supergiants in the H-R diagram is in good agreement with the evolutionary tracks for masses from 10 to 20 solar masses. Tracks and isochrones are available in tabular form for the adopted grid of chemical compositions in the extended plane Z-Y in three photometric systems. An interactive web interface allows users to obtain isochrones of any chemical composition inside the provided Z-Y range and also to simulate stellar populations with different Y(Z) helium-to-metal enrichment laws.Comment: 17 pages, 18 figures, accepted for publication in A&

    Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data

    Full text link
    Presented is a description of a Markov chain Monte Carlo (MCMC) parameter estimation routine for use with interferometric gravitational radiational data in searches for binary neutron star inspiral signals. Five parameters associated with the inspiral can be estimated, and summary statistics are produced. Advanced MCMC methods were implemented, including importance resampling and prior distributions based on detection probability, in order to increase the efficiency of the code. An example is presented from an application using realistic, albeit fictitious, data.Comment: submitted to Classical and Quantum Gravity. 14 pages, 5 figure
    corecore