138 research outputs found
HIV-1 tat addresses dendritic cells to induce a predominant th1-type adaptive immune response that appears prevalent in the asymptomatic stage of infection
Tat is an early regulatory protein that plays a major role in human HIV-1 replication and AIDS pathogenesis, and therefore, it represents a key target for the host immune response. In natural infection, however, Abs against Tat are produced only by a small fraction (∼20%) of asymptomatic individuals and are rarely seen in progressors, suggesting that Tat may possess properties diverting the adaptive immunity from generating humoral responses. Here we show that a Th1-type T cell response against Tat is predominant over a Th2-type B cell response in natural HIV-1 infection. This is likely due to the capability of Tat to selectively target and very efficiently enter CD1a-expressing monocyte-derived dendritic cells (MDDC), which represent a primary target for the recognition and response to virus Ag. Upon cellular uptake, Tat induces MDDC maturation and Th1-associated cytokines and β-chemokines production and polarizes the immune response in vitro to the Th1 pattern through the transcriptional activation of TNF-αgene expression. This requires the full conservation of Tat transactivation activity since neither MDDC maturation nor TNF-α production are found with either an oxidized Tat, which does not enter MDDC, or with a Tat protein mutated in the cysteine-rich region (cys22 Tat), which enters MDDC as the wild-type Tat but is transactivation silent. Consistently with these data, inoculation of monkeys with the native wild-type Tat induced a predominant Th1 response, whereas cys22 Tat generated mostly Th2 responses, therefore providing evidence that Tat induces a predominant Th1 polarized adaptive immune response in the host. Copyright © 2009 by The American Association of Immunologists, Inc
Measurements of the reaction of antiproton annihilation at rest at three hydrogen target densities
The proton-antiproton annihilation at rest into the final state
was measured for three different target densities: liquid hydrogen, gaseous
hydrogen at NTP and at a low pressure of 5 mbar. The yield of this reaction in
the liquid hydrogen target is smaller than in the low-pressure gas target. The
branching ratios of the channel were calculated on the basis of
simultaneous analysis of the three data samples. The branching ratio for
annihilation into from the protonium state turns out to be
about ten times smaller as compared to the one from the state.Comment: 10 pages, 3 Postscript figures. Accepted by Physics Letters
Understanding the implementation of evidence-based care: A structural network approach
<p>Abstract</p> <p>Background</p> <p>Recent study of complex networks has yielded many new insights into phenomenon such as social networks, the internet, and sexually transmitted infections. The purpose of this analysis is to examine the properties of a network created by the 'co-care' of patients within one region of the Veterans Health Affairs.</p> <p>Methods</p> <p>Data were obtained for all outpatient visits from 1 October 2006 to 30 September 2008 within one large Veterans Integrated Service Network. Types of physician within each clinic were nodes connected by shared patients, with a weighted link representing the number of shared patients between each connected pair. Network metrics calculated included edge weights, node degree, node strength, node coreness, and node betweenness. Log-log plots were used to examine the distribution of these metrics. Sizes of k-core networks were also computed under multiple conditions of node removal.</p> <p>Results</p> <p>There were 4,310,465 encounters by 266,710 shared patients between 722 provider types (nodes) across 41 stations or clinics resulting in 34,390 edges. The number of other nodes to which primary care provider nodes have a connection (172.7) is 42% greater than that of general surgeons and two and one-half times as high as cardiology. The log-log plot of the edge weight distribution appears to be linear in nature, revealing a 'scale-free' characteristic of the network, while the distributions of node degree and node strength are less so. The analysis of the k-core network sizes under increasing removal of primary care nodes shows that about 10 most connected primary care nodes play a critical role in keeping the <it>k</it>-core networks connected, because their removal disintegrates the highest <it>k</it>-core network.</p> <p>Conclusions</p> <p>Delivery of healthcare in a large healthcare system such as that of the US Department of Veterans Affairs (VA) can be represented as a complex network. This network consists of highly connected provider nodes that serve as 'hubs' within the network, and demonstrates some 'scale-free' properties. By using currently available tools to explore its topology, we can explore how the underlying connectivity of such a system affects the behavior of providers, and perhaps leverage that understanding to improve quality and outcomes of care.</p
A hierarchical network approach for modeling Rift Valley fever epidemics with applications in North America
Rift Valley fever is a vector-borne zoonotic disease which causes high
morbidity and mortality in livestock. In the event Rift Valley fever virus is
introduced to the United States or other non-endemic areas, understanding the
potential patterns of spread and the areas at risk based on disease vectors and
hosts will be vital for developing mitigation strategies. Presented here is a
general network-based mathematical model of Rift Valley fever. Given a lack of
empirical data on disease vector species and their vector competence, this
discrete time epidemic model uses stochastic parameters following several PERT
distributions to model the dynamic interactions between hosts and likely North
American mosquito vectors in dispersed geographic areas. Spatial effects and
climate factors are also addressed in the model. The model is applied to a
large directed asymmetric network of 3,621 nodes based on actual farms to
examine a hypothetical introduction to some counties of Texas, an important
ranching area in the United States of America (U.S.A.). The nodes of the
networks represent livestock farms, livestock markets, and feedlots, and the
links represent cattle movements and mosquito diffusion between different
nodes. Cattle and mosquito (Aedes and Culex) populations are treated with
different contact networks to assess virus propagation. Rift Valley fever virus
spread is assessed under various initial infection conditions (infected
mosquito eggs, adults or cattle). A surprising trend is fewer initial
infectious organisms result in a longer delay before a larger and more
prolonged outbreak. The delay is likely caused by a lack of herd immunity while
the infections expands geographically before becoming an epidemic involving
many dispersed farms and animals almost simultaneously
Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART.
Although HAART suppresses HIV replication, it is often unable to restore immune homeostasis. Consequently, non-AIDS-defining diseases are increasingly seen in treated individuals. This is attributed to persistent virus expression in reservoirs and to cell activation. Of note, in CD4(+) T cells and monocyte-macrophages of virologically-suppressed individuals, there is continued expression of multi-spliced transcripts encoding HIV regulatory proteins. Among them, Tat is essential for virus gene expression and replication, either in primary infection or for virus reactivation during HAART, when Tat is expressed, released extracellularly and exerts, on both the virus and the immune system, effects that contribute to disease maintenance. Here we report results of an ad hoc exploratory interim analysis (up to 48 weeks) on 87 virologically-suppressed HAART-treated individuals enrolled in a phase II randomized open-label multicentric clinical trial of therapeutic immunization with Tat (ISS T-002). Eighty-eight virologically-suppressed HAART-treated individuals, enrolled in a parallel prospective observational study at the same sites (ISS OBS T-002), served for intergroup comparison. Immunization with Tat was safe, induced durable immune responses, and modified the pattern of CD4(+) and CD8(+) cellular activation (CD38 and HLA-DR) together with reduction of biochemical activation markers and persistent increases of regulatory T cells. This was accompanied by a progressive increment of CD4(+) T cells and B cells with reduction of CD8(+) T cells and NK cells, which were independent from the type of antiretroviral regimen. Increase in central and effector memory and reduction in terminally-differentiated effector memory CD4(+) and CD8(+) T cells were accompanied by increases of CD4(+) and CD8(+) T cell responses against Env and recall antigens. Of note, more immune-compromised individuals experienced greater therapeutic effects. In contrast, these changes were opposite, absent or partial in the OBS population. These findings support the use of Tat immunization to intensify HAART efficacy and to restore immune homeostasis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00751595
Patterns of clinical presentation of adult coeliac disease in a rural setting
BACKGROUND: In recent years there has been increasing recognition that the pattern of presentation of coeliac disease may be changing. The classic sprue syndrome with diarrhoea and weight loss may be less common than the more subtle presentations of coeliac disease such as an isolated iron deficiency anaemia. As a result, the diagnosis of this treatable condition is often delayed or missed. Recent serologic screening tests allow non-invasive screening to identify most patients with the disease and can be applied in patients with even subtle symptoms indicative of coeliac disease. Both benign and malignant complications of coeliac disease can be avoided by early diagnosis and a strict compliance with a gluten free diet. AIM: The aim of this study is to evaluate the trends in clinical presentation of patients diagnosed with adult coeliac disease. In addition, we studied the biochemical and serological features and the prevalence of associated conditions in patients with adult coeliac disease. METHODS: This is an observational, retrospective, cross-sectional review of the medical notes of 32 adult patients attending the specialist coeliac clinic in a district general hospital. RESULTS: Anaemia was the most common mode of presentation accounting for 66% of patients. Less than half of the patients had any of the classical symptoms of coeliac disease and 25% had none of the classical symptoms at presentation. Anti-gliadin antibodies, anti-endomysial antibody and anti-tissue transglutaminase showed 75%, 68% and 90% sensitivity respectively. In combination, serology results were 100% sensitive as screening tests for adult coeliac disease. Fifty nine percent patients had either osteoporosis or osteopenia. There were no malignant complications observed during the follow up of our patients. CONCLUSION: Most adults with coeliac disease have a sub clinical form of the disease and iron deficiency anaemia may be its sole presenting symptom. Only a minority of adult coeliac disease patients present with classical mal-absorption symptoms of diarrhoea and weight loss. Patients with atypical form of disease often present initially to hospital specialists other than a gastro-enterologist. An awareness of the broad spectrum of presentations of adult coeliac disease, among doctors both in primary care and by the various hospital specialists in secondary care, is necessary to avoid delays in diagnosis. It is important to include serological screening tests for coeliac disease systematically in the evaluation of adult patients with unexplained iron deficiency anaemia or unexplained gastro-intestinal symptoms and in those who are considered to be at increased risk for coeliac disease
Study of the f(0)(1500)/f(2)(1565) production in the exclusive annihilation anti-n.anti-p -> pi+.pi+.pi- in flight
The spin-parity analysis of the (n) over bar p --> pi(+)pi(+)pi(-) exclusive reaction in flight is presented. The main aim is to study the (pi(+)pi(-)) invariant mass spectrum in the region around 1500 MeV. The analysis was performed with a Breit-Wigner parametrization for all the resonant states and, for the scalar sector in the mass region below 1.2 GeV, by means of a K-matrix-like treatment. It clearly shows the need for two states, a scalar one (0(++)) with mass and width (1522+/-25) MeV and (108+/-33) MeV, and a tensorial one (2(++)) with mass (1575 +/-18) MeV and width (119+/-24) MeV, respectively. In addition, the analysis requires the presence of a scalar state at (1280+/-55) MeV, (323+/-13) MeV broad, and of a second vectorial one, in addition to the rho(0)(770) signal, with mass and width (1348+/-33) MeV and (275+/-10) MeV, respectively
Evolution of scaling emergence in large-scale spatial epidemic spreading
Background: Zipf's law and Heaps' law are two representatives of the scaling
concepts, which play a significant role in the study of complexity science. The
coexistence of the Zipf's law and the Heaps' law motivates different
understandings on the dependence between these two scalings, which is still
hardly been clarified.
Methodology/Principal Findings: In this article, we observe an evolution
process of the scalings: the Zipf's law and the Heaps' law are naturally shaped
to coexist at the initial time, while the crossover comes with the emergence of
their inconsistency at the larger time before reaching a stable state, where
the Heaps' law still exists with the disappearance of strict Zipf's law. Such
findings are illustrated with a scenario of large-scale spatial epidemic
spreading, and the empirical results of pandemic disease support a universal
analysis of the relation between the two laws regardless of the biological
details of disease. Employing the United States(U.S.) domestic air
transportation and demographic data to construct a metapopulation model for
simulating the pandemic spread at the U.S. country level, we uncover that the
broad heterogeneity of the infrastructure plays a key role in the evolution of
scaling emergence.
Conclusions/Significance: The analyses of large-scale spatial epidemic
spreading help understand the temporal evolution of scalings, indicating the
coexistence of the Zipf's law and the Heaps' law depends on the collective
dynamics of epidemic processes, and the heterogeneity of epidemic spread
indicates the significance of performing targeted containment strategies at the
early time of a pandemic disease.Comment: 24pages, 7figures, accepted by PLoS ON
Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury
[EN] Objectives Acquired brain injury (ABI) can lead to the emergence of several disabilities and is commonly associated with high rates of anxiety and depression symptoms. Self-related constructs, such as self-esteem and self-compassion, might play a key role in this distressing symptomatology. Low explicit (i.e., deliberate) self-esteem is associated with anxiety and depression after ABI. However, implicit (i.e., automatic) self-esteem, explicit-implicit self-discrepancies, and self-compassion could also significantly contribute to this symptomatology. The purpose of the present study was to examine whether implicit self-esteem, explicit-implicit self-discrepancy (size and direction), and self-compassion are related to anxious and depressive symptoms after ABI in adults, beyond the contribution of explicit self-esteem. Methods The sample consisted 38 individuals with ABI who were enrolled in a long-term rehabilitation program. All participants completed the measures of explicit self-esteem, implicit self-esteem, self-compassion, anxiety, and depression. Pearson's correlations and hierarchical regression models were calculated. Results Findings showed that both self-compassion and implicit self-esteem negatively accounted for unique variance in anxiety and depression when controlling for explicit self-esteem. Neither the size nor direction of explicit-implicit self-discrepancy was significantly associated with anxious or depressive symptomatology. Conclusions The findings suggest that the consideration of self-compassion and implicit self-esteem, in addition to explicit self-esteem, contributes to understanding anxiety and depression following ABI.Lorena Desdentado is supported by a FPU doctoral scholarship (FPU18/01690) from the Spanish Ministry of Universities. This work was supported by CIBEROBN, an initiative of the ISCIII (ISC III CB06 03/0052).Desdentado, L.; Cebolla, A.; Miragall, M.; Llorens Rodríguez, R.; Navarro, MD.; Baños, RM. (2021). Exploring the Role of Explicit and Implicit Self-Esteem and Self-Compassion in Anxious and Depressive Symptomatology Following Acquired Brain Injury. Mindfulness. 12(4):899-910. https://doi.org/10.1007/s12671-020-01553-wS899910124Anson, K., & Ponsford, J. (2006). Coping and emotional adjustment following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 21(3), 248–259. https://doi.org/10.1097/00001199-200605000-00005.Baños, R. M., & Guillén, V. (2000). Psychometric characteristics in normal and social phobic samples for a Spanish version of the Rosenberg Self-Esteem Scale. Psychological Reports, 87(1), 269–274. https://doi.org/10.2466/pr0.2000.87.1.269.Beadle, E. J., Ownsworth, T., Fleming, J., & Shum, D. (2016). The impact of traumatic brain injury on self-identity: a systematic review of the evidence for self-concept changes. The Journal of Head Trauma Rehabilitation, 31(2), E12–E25. https://doi.org/10.1097/HTR.0000000000000158.Beck, A. T. (1979). Cognitive therapy of depression. New York: Guilford Press.Beevers, C. G. (2005). Cognitive vulnerability to depression: A dual process model. Clinical Psychology Review, 25(7), 975–1002. https://doi.org/10.1016/j.cpr.2005.03.003.Bos, A. E. R., Huijding, J., Muris, P., Vogel, L. R. R., & Biesheuvel, J. (2010). Global, contingent and implicit self-esteem and psychopathological symptoms in adolescents. Personality and Individual Differences, 48(3), 311–316. https://doi.org/10.1016/j.paid.2009.10.025.Bowerman, B. L., & O’Connell, R. T. (1990). Linear statistical models: An applied approach (2nd ed.). Belmont, CA: Duxbury.Brenner, R. E., Heath, P. J., Vogel, D. L., & Credé, M. (2017). Two is more valid than one: examining the factor structure of the self-compassion scale (SCS). Journal of Counseling Psychology, 64(6), 696–707. https://doi.org/10.1037/cou0000211.Brysbaert, M. (2019). How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. Journal of Cognition, 2(1), 1–38. https://doi.org/10.5334/joc.72.Carroll, E., & Coetzer, R. (2011). Identity, grief and self-awareness after traumatic brain injury. Neuropsychological Rehabilitation, 21(3), 289–305. https://doi.org/10.1080/09602011.2011.555972.Corrigan, P. W., & Watson, A. C. (2002). The paradox of self-stigma and mental illness. Clinical Psychology: Science and Practice, 9(1), 35–53. https://doi.org/10.1093/clipsy/9.1.35.Creemers, D. H. M., Scholte, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2012). Implicit and explicit self-esteem as concurrent predictors of suicidal ideation, depressive symptoms, and loneliness. Journal of Behavior Therapy and Experimental Psychiatry, 43(1), 638–646. https://doi.org/10.1016/j.jbtep.2011.09.006.Creemers, D. H. M., Scholt, R. H. J., Engels, R. C. M. E., Prinstein, M. J., & Wiers, R. W. (2013). Damaged self-esteem is associated with internalizing problems. Frontiers in Psychology, 4, 152. https://doi.org/10.3389/fpsyg.2013.00152.Curvis, W., Simpson, J., & Hampson, N. (2018). Factors associated with self-esteem following acquired brain injury in adults: a systematic review. Neuropsychological Rehabilitation, 28(1), 142–183. https://doi.org/10.1080/09602011.2016.1144515.Elbaum, J., & Benson, D. (Eds.). (2007). Acquired brain injury: an integrative neuro-rehabilitation approach. New York: Springer. https://doi.org/10.1007/978-0-387-37575-5.Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149.FEDACE. (2015). Las personas con daño cerebral adquirido en España. Ministerio de Sanidad, Servicios Sociales e Igualdad. Retrieved May 21, 2020, from: https://fedace.org/index.php?V_dir=MSC&V_mod=download&f=2016-9/26-16-4-11.admin.Informe_FEDACE_RPD_para_DDC-1.pdf.Feigin, V. L., Forouzanfar, M. H., Krishnamurthi, R., Mensah, G. A., Connor, M., Bennett, D. A., Moran, A. E., Sacco, R. L., Anderson, L., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C. M. M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., & Naghavi, M. (2014). Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. The Lancet, 383(9913), 245–254. https://doi.org/10.1016/S0140-6736(13)61953-4.Fennell, M. J. V. (1997). Low self-esteem: a cognitive perspective. Behavioural and Cognitive Psychotherapy, 25(1), 1–26. https://doi.org/10.1017/s1352465800015368.Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6.Garcia-Campayo, J., Navarro-Gil, M., Andrés, E., Montero-Marin, J., López-Artal, L., Marcos, M., & Demarzo, P. (2014). Validation of the Spanish versions of the long (26 items) and short (12 items) forms of the Self-Compassion Scale (SCS). Health and Quality of Life Outcomes, 12(4). https://doi.org/10.1186/1477-7525-12-4.GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. (2018). Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 56–87. https://doi.org/10.1016/S1474-4422(18)30415-0.Gould, K. R., Ponsford, J. L., Johnston, L., & Schönberger, M. (2011). Relationship between psychiatric disorders and 1-year psychosocial outcome following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 26(1), 79–89. https://doi.org/10.1097/HTR.0b013e3182036799.Gracey, F., Palmer, S., Rous, B., Psaila, K., Shaw, K., O’Dell, J., Cope, J., & Mohamed, S. (2008). “Feeling part of things”: personal construction of self after brain injury. Neuropsychological Rehabilitation, 18(5–6), 627–650. https://doi.org/10.1080/09602010802041238.Gracey, F., Evans, J. J., & Malley, D. (2009). Capturing process and outcome in complex rehabilitation interventions: a “Y-shaped” model. Neuropsychological Rehabilitation, 19(6), 867–890. https://doi.org/10.1080/09602010903027763.Greenwald, A. G., & Farnham, S. D. (2000). Using the Implicit Association Test to measure self-esteem and self-concept. Journal of Personality and Social Psychology, 79(6), 1022–1038. https://doi.org/10.1037/0022-3514.79.6.1022.Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: the Implicit Association Test. Journal of Personality and Social Psychology, 74(6), 1464–1480. https://doi.org/10.1037/0022-3514.74.6.1464.Greenwald, A. G., Nosek, B. A., & Banaji, M. R. (2003). Understanding and using the Implicit Association Test: I. An improved scoring algorithm. Journal of Personality and Social Psychology, 85(2), 197–216. https://doi.org/10.1037/0022-3514.85.2.197.Hackett, M. L., Yapa, C., Parag, V., & Anderson, C. S. (2005). Frequency of depression after stroke: a systematic review of observational studies. Stroke, 36(6), 1330–1340. https://doi.org/10.1161/01.STR.0000165928.19135.35.Haeffel, G. J., Abramson, L. Y., Brazy, P. C., Shah, J. Y., Teachman, B. A., & Nosek, B. A. (2007). Explicit and implicit cognition: a preliminary test of a dual-process theory of cognitive vulnerability to depression. Behaviour Research and Therapy, 45(6), 1155–1167. https://doi.org/10.1016/j.brat.2006.09.003.Ingram, R. E. (1984). Toward an information-processing analysis of depression. Cognitive Therapy and Research, 8(5), 443–477. https://doi.org/10.1007/BF01173284.Izuma, K., Kennedy, K., Fitzjohn, A., Sedikides, C., & Shibata, K. (2018). Neural activity in the reward-related brain regions predicts implicit self-esteem: a novel validity test of psychological measures using neuroimaging. Journal of Personality and Social Psychology, 114(3), 343–357. https://doi.org/10.1037/pspa0000114.Khan-Bourne, N., & Brown, R. G. (2003). Cognitive behaviour therapy for the treatment of depression in individuals with brain injury. Neuropsychological Rehabilitation, 13(1–2), 89–107. https://doi.org/10.1080/09602010244000318.Kim, H. S., & Moore, M. T. (2019). Symptoms of depression and the discrepancy between implicit and explicit self-esteem. Journal of Behavior Therapy and Experimental Psychiatry, 63, 1–5. https://doi.org/10.1016/j.jbtep.2018.12.001.Lane, K. A., Banaji, M. R., Nosek, B. A., & Greenwald, A. G. (2007). Understanding and using the Implicit Association Test: IV. What we know (so far) about the method. In B. Wittenbrink & N. Schwarz (Eds.), Implicit measures of attitudes (pp. 59–102). New York: The Guildford Press.Leary, M. R., Tate, E. B., Adams, C. E., Batts Allen, A., & Hancock, J. (2007). Self-compassion and reactions to unpleasant self-relevant events: the implications of treating oneself kindly. Personality Processes and Individual Differences, 92(5), 887–904. https://doi.org/10.1037/0022-3514.92.5.887.Lennon, A., Bramham, J., Carroll, À., McElligott, J., Carton, S., Waldron, B., Fortune, D., Burke, T., Fitzhenry, M., & Benson, C. (2014). A qualitative exploration of how individuals reconstruct their sense of self following acquired brain injury in comparison with spinal cord injury. Brain Injury, 28(1), 27–37. https://doi.org/10.3109/02699052.2013.848378.Longworth, C., Deakins, J., Rose, D., & Gracey, F. (2018). The nature of self-esteem and its relationship to anxiety and depression in adult acquired brain injury. Neuropsychological Rehabilitation, 28(7), 1078–1094. https://doi.org/10.1080/09602011.2016.1226185.MacBeth, A., & Gumley, A. (2012). Exploring compassion: a meta-analysis of the association between self-compassion and psychopathology. Clinical Psychology Review, 32(6), 545–552. https://doi.org/10.1016/j.cpr.2012.06.003.McDonald, S., Saad, A., & James, C. (2011). Social dysdecorum following severe traumatic brain injury: loss of implicit social knowledge or loss of control? Journal of Clinical and Experimental Neuropsychology, 33(6), 619–630. https://doi.org/10.1080/13803395.2011.553586.Milne, E., & Grafman, J. (2001). Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. The Journal of Neuroscience, 21(12), 1–6.Moors, A., & De Houwer, J. (2006). Automaticity: a theoretical and conceptual analysis. Psychological Bulletin, 132(2), 297–326. https://doi.org/10.1037/0033-2909.132.2.297.Muris, P., & Petrocchi, N. (2017). Protection or vulnerability? A meta-analysis of the relations between the positive and negative components of self-compassion and psychopathology. Clinical Psychology & Psychotherapy, 24(2), 373–383. https://doi.org/10.1002/cpp.2005.Myers, R. (2000). Classical and modern regression with applications (2nd ed.). Belmont, CA: Duxbury.Neff, K. D. (2003). Self-compassion: an alternative conceptualization of a healthy attitude toward oneself. Self and Identity, 2(2), 85–101. https://doi.org/10.1080/15298860309032.Neff, K. D., & Vonk, R. (2009). Self-compassion versus global self-esteem: two different ways of relating to oneself. Journal of Personality, 77, 23–50. https://doi.org/10.1111/j.1467-6494.2008.00537.x.Neff, K. D., Tóth-Király, I., Yarnell, L. M., Arimitsu, K., Castilho, P., Ghorbani, N., Guo, H. X., Hirsch, J. K., Hupfeld, J., Hutz, C. S., Kotsou, I., Lee, W. K., Montero-Marin, J., Sirois, F. M., De Souza, L. K., Svendsen, J. L., Wilkinson, R. B., & Mantzios, M. (2019). Examining the factor structure of the Self-Compassion Scale in 20 diverse samples: support for use of a total score and six subscale scores. Psychological Assessment, 31(1), 27–45. https://doi.org/10.1037/pas0000629.Norton, P. J., & Paulus, D. J. (2017). Transdiagnostic models of anxiety disorder: theoretical and empirical underpinnings. Clinical Psychology Review, 56, 122–137. https://doi.org/10.1016/j.cpr.2017.03.004.Nosek, B. A., & Banaji, M. R. (2001). The go/no-go association task. Social Cognition, 19(6), 625–664. https://doi.org/10.1521/soco.19.6.625.20886.Oddy, M., & Herbert, C. (2003). Intervention with families following brain injury: evidence-based practice. Neuropsychological Rehabilitation, 13(1–2), 259–273. https://doi.org/10.1080/09602010244000345.Ouimet, A. J., Gawronski, B., & Dozois, D. J. A. (2009). Cognitive vulnerability to anxiety: a review and an integrative model. Clinical Psychology Review, 29(6), 459–470. https://doi.org/10.1016/j.cpr.2009.05.004.Ponsford, J., Kelly, A., & Couchman, G. (2014). Self-concept and self-esteem after acquired brain injury: a control group comparison. Brain Injury, 28(2), 146–154. https://doi.org/10.3109/02699052.2013.859733.Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the Self-Compassion Scale. Clinical Psychology & Psychotherapy, 18(3), 250–255. https://doi.org/10.1002/cpp.702.Romero, M., Sánchez, A., Marín, C., Navarro, M. D., Ferri, J., & Noé, E. (2012). Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. Neurología (English Edition), 27(4), 216–224. https://doi.org/10.1016/j.nrleng.2011.06.001.Rosenberg, M. (1965). Rosenberg Self-Esteem Scale (RSE). Acceptance and Commitment Therapy. Measures Package, 61, 52 /S0034-98872009000600009.Sandstrom, M. J., & Jordan, R. (2008). Defensive self-esteem and aggression in childhood. Journal of Research in Personality, 42(2), 506–514. https://doi.org/10.1016/j.jrp.2007.07.008.Schönberger, M., & Ponsford, J. (2010). The factor structure of the Hospital Anxiety and Depression Scale in individuals with traumatic brain injury. Psychiatry Research, 179(3), 342–349. https://doi.org/10.1016/j.psychres.2009.07.003.Schröder-Abé, M., Rudolph, A., & Schütz, A. (2007). High implicit self-esteem is not necessarily advantageous: discrepancies between explicit and implicit self-esteem and their relationship with anger expression and psychological health. European Journal of Personality, 21(3), 319–339. https://doi.org/10.1002/per.626.Scoglio, A. A. J., Rudat, D. A., Garvert, D., Jarmolowski, M., Jackson, C., & Herman, J. L. (2018). Self-compassion and responses to trauma: the role of emotion regulation. Journal of Interpersonal Violence, 33(13), 2016–2036. https://doi.org/10.1177/0886260515622296.Sloan, E., Hall, K., Moulding, R., Bryce, S., Mildred, H., & Staiger, P. K. (2017). Emotion regulation as a transdiagnostic treatment construct across anxiety, depression, substance, eating and borderline personality disorders: a systematic review. Clinical Psychology Review, 57, 141–163. https://doi.org/10.1016/j.cpr.2017.09.002.Smeijers, D., Vrijsen, J. N., van Oostrom, I., Isaac, L., Speckens, A., Becker, E. S., & Rinck, M. (2017). Implicit and explicit self-esteem in remitted depressed patients. Journal of Behavior Therapy and Experimental Psychiatry, 54, 301–306. https://doi.org/10.1016/j.jbtep.2016.10.006.Smith, E. R., & DeCoster, J. (2000). Dual-process models in social and cognitive psychology: conceptual integration and links to underlying memory systems. Personality and Social Psychology Review, 4(2), 108–131. https://doi.org/10.1207/S15327957PSPR0402_01.Sowislo, J. F., & Orth, U. (2013). Does low self-esteem predict depression and anxiety? A meta-analysis of longitudinal studies. Psychological Bulletin, 139(1), 213–240. https://doi.org/10.1037/a0028931.Strack, F., & Deutsch, R. (2004). Reflective and impulsive determinants of social behavior. Personality and Social Psychology Review, 8(3), 220–247. https://doi.org/10.1207/s15327957pspr0803_1.Terol-Cantero, M. C., Cabrera-Perona, V., & Martín-Aragón, M. (2015). Hospital Anxiety and Depression Scale (HADS) review in Spanish samples. Anales de Psicología, 31(2), 494–503. https://doi.org/10.6018/analesps.31.2.172701.Tóth-Király, I., & Neff, K. D. (2020). Is self-compassion universal? Support for the measurement invariance of the Self-Compassion Scale across populations. Assessment. Advance online publication. https://doi.org/10.1177/1073191120926232.Turner-Stokes, L., & Wade, D. (2003). Rehabilitation following acquired brain injury: National Clinical Guidelines. Clinical Medicine, 4(1), 61–65. https://doi.org/10.7861/clinmedicine.4-1-61.Tyerman, A., & Humphrey, M. (1984). Changes in self-concept following severe head injury. International Journal of Rehabilitation Research, 7(1), 11–23. https://doi.org/10.1097/00004356-198403000-00002.Valiente, C., Cantero, D., Vázquez, C., Sanchez, Á., Provencio, M., & Espinosa, R. (2011). Implicit and explicit self-esteem discrepancies in paranoia and depression. Journal of Abnormal Psychology, 120(3), 691–699. https://doi.org/10.1037/a0022856.Vickery, C. D., Sepehri, A., & Evans, C. C. (2008). Self-esteem in an acute stroke rehabilitation sample: a control group comparison. Clinical Rehabilitation, 22(2), 179–187. https://doi.org/10.1177/0269215507080142.Whelan-Goodinson, R., Ponsford, J., & Schönberger, M. (2009). Validity of the Hospital Anxiety and Depression Scale to assess depression and anxiety following traumatic brain injury as compared with the Structured Clinical Interview for DSM-IV. Journal of Affective Disorders, 114(1–3), 94–102. https://doi.org/10.1016/j.jad.2008.06.007.Zeigler-Hill, V. (2006). Discrepancies between implicit and explicit self-esteem: Implications for narcissism and self-esteem instability. Journal of Personality, 74(1), 119–144. https://doi.org/10.1111/j.1467-6494.2005.00371.x.Zessin, U., Dickhäuser, O., & Garbade, S. (2015). The relationship between self-compassion and well-being: a meta-analysis. Applied Psychology. Health and Well-Being, 7(3), 340–364. https://doi.org/10.1111/aphw.12051.Zhang, J. W., Chen, S., & Tomova Shakur, T. K. (2020). From me to you: Self-compassion predicts acceptance of own and others’ imperfections. Personality and Social Psychology Bulletin, 46(2), 228–242. https://doi.org/10.1177/0146167219853846.Zigmond, A. S., & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica, 67(6), 361–370. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
Older People’s Needs and Opportunities for Assistive Technologies
Older adults experience a disconnect between their needs and adoption of technologies that have potential to assist and to support more independent living. This paper reviewed research that links people’s needs with opportunities for assistive technologies. It searched 13 databases identifying 923 papers with 34 papers finally included for detailed analysis. The research papers identified needs in the fields of health, leisure, living, safety, communication, family relationship and social involvement. Amongst these, support for activities of daily living category was of most interest. In specific sub-categories, the next most reported need was assistive technology to support walking and mobility followed by smart cooking/kitchen technology and assistive technology for social contacts with family member/other people. The research aimed to inform a program of research into improving the adoption of technologies where they can ameliorate identified needs of older people
- …