262 research outputs found

    Body image distortions following spinal cord injury

    Get PDF
    Background: Following spinal cord injury (SCI) or anaesthesia, people may continue to experience feelings of the size, shape, and posture of their body, suggesting that the conscious body image is not fully determined by immediate sensory signals. How this body image is affected by changes in sensory inputs from, and motor outputs to the body remains unclear. Methods: We tested paraplegic and tetraplegic SCI patients on a task that yields quantitative measures of body image. Participants were presented with an anchoring stimulus on a computer screen and told to imagine that the displayed body part was part of a standing mirror image of themselves. They then identified the position on the screen, relative to the anchor, where each of several parts of their body would be located. Veridical body dimensions were identified based on measurements and photographs of participants. Results: Compared to age-matched controls, paraplegic and tetraplegic patients alike perceived their torso and limbs as elongated relative to their body width. No effects of lesion level were found. Conclusions: The common distortions in body image across patient groups, despite differing SCI levels, imply that a body image may be maintained despite chronic sensory and motor loss. Systematic alterations in body image follow SCI, though our results suggest these may reflect prolonged changes in body posture and wheelchair use, rather than loss of specific sensorimotor pathways. These findings provide new insight into how the body image is maintained, and may prove useful in treatments that intervene to manipulate the body image

    Embodying functionally relevant action sounds in patients with spinal cord injury

    Get PDF
    Growing evidence indicates that perceptual-motor codes may be associated with and influenced by actual bodily states. Following a spinal cord injury (SCI), for example, individuals exhibit reduced visual sensitivity to biological motion. However, a dearth of direct evidence exists about whether profound alterations in sensorimotor traffic between the body and brain influence audio-motor representations. We tested 20 wheelchair-bound individuals with lower skeletal-level SCI who were unable to feel and move their lower limbs, but have retained upper limb function. In a two-choice, matching-to-sample auditory discrimination task, the participants were asked to determine which of two action sounds matched a sample action sound presented previously. We tested aural discrimination ability using sounds that arose from wheelchair, upper limb, lower limb, and animal actions. Our results indicate that an inability to move the lower limbs did not lead to impairment in the discrimination of lower limb-related action sounds in SCI patients. Importantly, patients with SCI discriminated wheelchair sounds more quickly than individuals with comparable auditory experience (i.e. physical therapists) and inexperienced, able-bodied subjects. Audio-motor associations appear to be modified and enhanced to incorporate external salient tools that now represent extensions of their body schema

    Cocaine-related cervical spinal cord infarction: a case report and review of the literature

    Get PDF
    Study design Case report. Objectives To report a clinical case of spinal cord infarction due to cocaine use. Setting Spinal Center, IRCCS Fondazione S. Lucia, Rome (Italy). Case presentation Two days after recreational use of cocaine, a 27-year-old Caucasic man was admitted to the emergency department for acute cervical pain, weakness in all four limbs, and urinary retention. A cervical spinal magnetic resonance imaging scan, performed after 2 days, showed a "pencil-like" lesion extending from C4 to T1 metamer, compatible with acute ischemia in the anterior spinal artery territory. Other causes of vascular disorders, as well as inflammatory and infectious disorders were ruled out. At admission in our department, the patient had an incomplete tetraplegia at level C6, an indwelling catheter, and was unable to stand and walk. After 3 months of rehabilitation, he had an AIS score D tetraplegia at level C7, was able to stand and walk using parallel bars, and indwelling catheter was replaced by intermittent catheterization. Discussion and conclusions The etiology of medullary infarction may remain unexplained in nearly 30-40% of cases. Even if rare, cocaine-induced ischemic myelopathy should be considered and ruled out in the differential diagnosis of any acute nontraumatic myelopathy, especially in young patients

    Overground robotic training effects on walking and secondary health conditions in individuals with spinal cord injury: systematic review

    Get PDF
    Overground powered lower limb exoskeletons (EXOs) have proven to be valid devices in gait rehabilitation in individuals with spinal cord injury (SCI). Although several articles have reported the effects of EXOs in these individuals, the few reviews available focused on specific domains, mainly walking. The aim of this systematic review is to provide a general overview of the effects of commercial EXOs (i.e. not EXOs used in military and industry applications) for medical purposes in individuals with SCI. This systematic review was conducted following the PRISMA guidelines and it referred to MED-LINE, EMBASE, SCOPUS, Web of Science and Cochrane library databases. The studies included were Randomized Clinical Trials (RCTs) and non-RCT based on EXOs intervention on individuals with SCI. Out of 1296 studies screened, 41 met inclusion criteria. Among all the EXO studies, the Ekso device was the most discussed, followed by ReWalk, Indego, HAL and Rex devices. Since 14 different domains were considered, the outcome measures were heterogeneous. The most investigated domain was walking, followed by cardiorespiratory/metabolic responses, spasticity, balance, quality of life, human–robot interaction, robot data, bowel functionality, strength, daily living activity, neurophysiology, sensory function, bladder functionality and body composition/bone density domains. There were no reports of negative effects due to EXOs trainings and most of the significant positive effects were noted in the walking domain for Ekso, ReWalk, HAL and Indego devices. Ekso studies reported significant effects due to training in almost all domains, while this was not the case with the Rex device. Not a single study carried out on sensory functions or bladder functionality reached significance for any EXO. It is not possible to draw general conclusions about the effects of EXOs usage due to the lack of high-quality studies as addressed by the Downs and Black tool, the heterogeneity of the outcome measures, of the protocols and of the SCI epidemiological/neurological features. However, the strengths and weaknesses of EXOs are starting to be defined, even considering the different types of adverse events that EXO training brought about. EXO training showed to bring significant improvements over time, but whether its effectiveness is greater or less than conventional therapy or other treatments is still mostly unknown. High-quality RCTs are necessary to better define the pros and cons of the EXOs available today. Studies of this kind could help clinicians to better choose the appropriate training for individuals with SCI

    Neurogenic Bowel Dysfunction Changes after Osteopathic Care in Individuals with Spinal Cord Injuries: A Preliminary Randomized Controlled Trial

    Get PDF
    Background: Neurogenic bowel dysfunction (NBD) indicates bowel dysfunction due to a lack of nervous control after a central nervous system lesion. Bowel symptoms, such as difficulties with evacuation, constipation, abdominal pain and swelling, are experienced commonly among individuals with spinal cord injury (SCI). Consequentially, individuals with SCI experience a general dissatisfaction with the lower perceived quality of life (QoL). Several studies have demonstrated the positive effects of manual therapies on NBD, including Osteopathic Manipulative Treatment (OMT). This study aimed to explore OMT effects on NBD in individuals with SCI compared with Manual Placebo Treatment (MPT). Methods: The study was a double-blind randomized controlled trial composed of three phases, each one lasting 30 days (i: NBD/drugs monitoring; ii: four OMT/MPT sessions; iii: NBD/drug monitoring and follow-up evaluation). Results: the NBD scale, the QoL on worries and concerns sub-questionnaire, and the perception of abdominal swelling and constipation significantly improved after treatments compared to baseline only for individuals who underwent OMT. Conclusion: These preliminary results showed positive effects of OMT on bowel function and QoL in individuals with SCI, but further studies are needed to confirm our results

    Lesional Antibody Synthesis and Complement Deposition Associate With De Novo Antineuronal Antibody Synthesis After Spinal Cord Injury

    Full text link
    BACKGROUND AND OBJECTIVES: Spinal cord injury (SCI) disrupts the fine-balanced interaction between the CNS and immune system and can cause maladaptive aberrant immune responses. The study examines emerging autoantibody synthesis after SCI with binding to conformational spinal cord epitopes and surface peptides located on the intact neuronal membrane. METHODS: This is a prospective longitudinal cohort study conducted in acute care and inpatient rehabilitation centers in conjunction with a neuropathologic case-control study in archival tissue samples ranging from acute injury (baseline) to several months thereafter (follow-up). In the cohort study, serum autoantibody binding was examined in a blinded manner using tissue-based assays (TBAs) and dorsal root ganglia (DRG) neuronal cultures. Groups with traumatic motor complete SCI vs motor incomplete SCI vs isolated vertebral fracture without SCI (controls) were compared. In the neuropathologic study, B cell infiltration and antibody synthesis at the spinal lesion site were examined by comparing SCI with neuropathologically unaltered cord tissue. In addition, the CSF in an individual patient was explored. RESULTS: Emerging autoantibody binding in both TBA and DRG assessments was restricted to an SCI patient subpopulation only (16%, 9/55 sera) while being absent in vertebral fracture controls (0%, 0/19 sera). Autoantibody binding to the spinal cord characteristically detected the substantia gelatinosa, a less-myelinated region of high synaptic density involved in sensory-motor integration and pain processing. Autoantibody binding was most frequent after motor complete SCI (grade American Spinal Injury Association impairment scale A/B, 22%, 8/37 sera) and was associated with neuropathic pain medication. In conjunction, the neuropathologic study demonstrated lesional spinal infiltration of B cells (CD20, CD79a) in 27% (6/22) of patients with SCI, the presence of plasma cells (CD138) in 9% (2/22). IgG and IgM antibody syntheses colocalized to areas of activated complement (C9neo) deposition. Longitudinal CSF analysis of an additional single patient demonstrated de novo (IgM) intrathecal antibody synthesis emerging with late reopening of the blood-spinal cord barrier. DISCUSSION: This study provides immunologic, neurobiological, and neuropathologic proof-of-principle for an antibody-mediated autoimmunity response emerging approximately 3 weeks after SCI in a patient subpopulation with a high demand of neuropathic pain medication. Emerging autoimmunity directed against specific spinal cord and neuronal epitopes suggests the existence of paratraumatic CNS autoimmune syndromes

    Psychological treatments and psychotherapies in the neurorehabilitation of pain. Evidences and recommendations from the italian consensus conference on pain in neurorehabilitation

    Get PDF
    BACKGROUND: It is increasingly recognized that treating pain is crucial for effective care within neurological rehabilitation in the setting of the neurological rehabilitation. The Italian Consensus Conference on Pain in Neurorehabilitation was constituted with the purpose identifying best practices for us in this context. Along with drug therapies and physical interventions, psychological treatments have been proven to be some of the most valuable tools that can be used within a multidisciplinary approach for fostering a reduction in pain intensity. However, there is a need to elucidate what forms of psychotherapy could be effectively matched with the specific pathologies that are typically addressed by neurorehabilitation teams. OBJECTIVES: To extensively assess the available evidence which supports the use of psychological therapies for pain reduction in neurological diseases. METHODS: A systematic review of the studies evaluating the effect of psychotherapies on pain intensity in neurological disorders was performed through an electronic search using PUBMED, EMBASE, and the Cochrane Database of Systematic Reviews. Based on the level of evidence of the included studies, recommendations were outlined separately for the different conditions. RESULTS: The literature search yielded 2352 results and the final database included 400 articles. The overall strength of the recommendations was medium/low. The different forms of psychological interventions, including Cognitive-Behavioral Therapy, cognitive or behavioral techniques, Mindfulness, hypnosis, Acceptance and Commitment Therapy (ACT), Brief Interpersonal Therapy, virtual reality interventions, various forms of biofeedback and mirror therapy were found to be effective for pain reduction in pathologies such as musculoskeletal pain, fibromyalgia, Complex Regional Pain Syndrome, Central Post-Stroke pain, Phantom Limb Pain, pain secondary to Spinal Cord Injury, multiple sclerosis and other debilitating syndromes, diabetic neuropathy, Medically Unexplained Symptoms, migraine and headache. CONCLUSIONS: Psychological interventions and psychotherapies are safe and effective treatments that can be used within an integrated approach for patients undergoing neurological rehabilitation for pain. The different interventions can be specifically selected depending on the disease being treated. A table of evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation is also provided in the final part of the pape

    Neurological recovery after traumatic spinal cord injury:what is meaningful? A patients' and physicians' perspective

    Get PDF
    Study design: Cross-sectional survey. Objectives: Most studies on neurological recovery after traumatic spinal cord injury (tSCI) assess treatment effects using the American Spinal Injury Association Impairment Scale (AIS grade) or motor points recovery. To what extent neurological recovery is considered clinically meaningful is unknown. This study investigated the perceived clinical benefit of various degrees of neurological recovery one year after C5 AIS-A tSCI. Setting: The Netherlands. Methods: By means of a web-based survey SCI patients and physicians evaluated the benefit of various scenarios of neurological recovery on a scale from 0 to 100% (0% no benefit to 100% major benefit). Recovery to AIS-C and D, was split into C/C+ and D/D+, which was defined by the lower and upper limit of recovery for each grade. Results: A total of 79 patients and 77 physicians participated in the survey. Each AIS grade improvement from AIS-A was considered significant benefit (all p < 0.05), ranging from 47.8% (SD 26.1) for AIS-B to 86.8% (SD 24.3) for AIS-D+. Motor level lowering was also considered significant benefit (p < 0.05), ranging from 66.1% (SD 22.3) for C6 to 81.7% (SD 26.0) for C8. Conclusions: Meaningful recovery can be achieved without improving in AIS grade, since the recovery of functional motor levels appears to be as important as improving in AIS grade by both patients and physicians. Moreover, minor neurological improvements within AIS-C and D are also considered clinically meaningful. Future studies should incorporate more detailed neurological outcomes to prevent potential underestimation of neurological recovery by only using the AIS grade

    Rehabilitation of hand function after spinal cord injury using a novel handgrip device: a pilot study

    Get PDF
    BackgroundActivity-based therapy (ABT) for patients with spinal cord injury (SCI), which consists of repetitive use of muscles above and below the spinal lesion, improves locomotion and arm strength. Less data has been published regarding its effects on hand function. We sought to evaluate the effects of a weekly hand-focused therapy program using a novel handgrip device on grip strength and hand function in a SCI cohort.MethodsPatients with SCI were enrolled in a weekly program that involved activities with the MediSens (Los Angeles, CA) handgrip. These included maximum voluntary contraction (MVC) and a tracking task that required each subject to adjust his/her grip strength according to a pattern displayed on a computer screen. For the latter, performance was measured as mean absolute accuracy (MAA). The Spinal Cord Independence Measure (SCIM) was used to measure each subject's independence prior to and after therapy.ResultsSeventeen patients completed the program with average participation duration of 21.3&nbsp;weeks. The cohort included patients with American Spinal Injury Association (ASIA) Impairment Scale (AIS) A (n = 12), AIS B (n = 1), AIS C (n = 2), and AIS D (n = 2) injuries. The average MVC for the cohort increased from 4.1&nbsp;N to 21.2&nbsp;N over 20&nbsp;weeks, but did not reach statistical significance. The average MAA for the cohort increased from 9.01 to 21.7% at the end of the study (p = .02). The cohort's average SCIM at the end of the study was unchanged compared to baseline.ConclusionsA weekly handgrip-based ABT program is feasible and efficacious at increasing hand task performance in subjects with SCI
    • …
    corecore