136 research outputs found

    All-optical three-dimensional electron pulse compression

    Get PDF
    We propose an all-optical, three-dimensional electron pulse compression scheme in which Hermite-Gaussian optical modes are used to fashion a three-dimensional optical trap in the electron pulse's rest frame. We show that the correct choices of optical incidence angles are necessary for optimal compression. We obtain analytical expressions for the net impulse imparted by Hermite-Gaussian free-space modes of arbitrary order. Although we focus on electrons, our theory applies to any charged particle and any particle with non-zero polarizability in the Rayleigh regime. We verify our theory numerically using exact solutions to Maxwell's equations for first-order Hermite-Gaussian beams, demonstrating single-electron pulse compression factors of >102>10^{2} in both longitudinal and transverse dimensions with experimentally realizable optical pulses. The proposed scheme is useful in ultrafast electron imaging for both single- and multi-electron pulse compression, and as a means of circumventing temporal distortions in magnetic lenses when focusing ultrashort electron pulses.Comment: 21 pages, 7 figure

    Disentangling the Electronic and Lattice Contributions to the Dielectric Response of Photoexcited Bismuth

    Full text link
    Elucidating the interplay between nuclear and electronic degrees of freedom that govern the complex dielectric behavior of materials under intense photoexcitation is essential for tailoring optical properties on demand. However, conventional transient reflectivity experiments have been unable to differentiate between real and imaginary components of the dielectric response, omitting crucial electron-lattice interactions. Utilizing thin film interference we unambiguously determined the photoinduced change in complex dielectric function in the Peierls semimetal bismuth and examined its dependence on the excitation density and nuclear motion of the A1g_{1g} phonon. Our modeled transient reflectivity data reveals a progressive broadening and redshift of Lorentz oscillators with increasing excitation density and underscores the importance of both, electronic and nuclear coordinates in the renormalization of interband transitions.Comment: Manuscript (6 pages) plus supplemental material (6 pages

    Ultrafast electronic and lattice dynamics in laser-excited crystalline bismuth

    Full text link
    Femtosecond spectroscopy is applied to study transient electronic and lattice processes in bismuth. Components with relaxation times of 1 ps, 7 ps and ~ 1 ns are detected in the photoinduced reflectivity response of the crystal. To facilitate the assignment of the observed relaxation to the decay of particular excited electronic states we use pump pulses with central wavelengths ranging from 400 nm to 2.3 mum. Additionally, we examine the variation of parameters of coherent A1g phonons upon the change of excitation and probing conditions. Data analysis reveals a significant wavevector dependence of electron-hole and electron- phonon coupling strength along \Gamma--T direction of the Brillouin zone.Comment: 19 pages, 9 figure

    Ring closing reaction in diarylethene captured by femtosecond electron crystallography

    Get PDF
    The photoinduced ring-closing reaction in diarylethene, which serves as a model system for understanding reactive crossings through conical intersections, was directly observed with atomic resolution using femtosecond electron diffraction. Complementary ab initio calculations were also performed. Immediately following photoexcitation, subpicosecond structural changes associated with the formation of an open-ring excited-state intermediate were resolved. The key motion is the rotation of the thiophene rings, which significantly decreases the distance between the reactive carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These direct observations of the molecular motions driving an organic chemical reaction were only made possible through the development of an ultrabright electron source to capture the atomic motions within the limited number of sampling frames and the low data acquisition rate dictated by the intrinsically poor thermal conductivity and limited photoreversibility of organic materials

    Incorporating fine-scale environmental heterogeneity into broad-extent models

    Get PDF
    A key aim of ecology is to understand the drivers of ecological patterns, so that we can accurately predict the effects of global environmental change. However, in many cases, predictors are measured at a finer resolution than the ecological response. We therefore require data aggregation methods that avoid loss of information on fine-grain heterogeneity. We present a data aggregation method that, unlike current approaches, reduces the loss of information on fine-grain spatial structure in environmental heterogeneity for use with coarse-grain ecological datasets. Our method contains three steps: (a) define analysis scales (predictor grain, response grain, scale-of-effect); (b) use a moving window to calculate a measure of variability in environment (predictor grain) at the process-relevant scale (scale-of-effect); and (c) aggregate the moving window calculations to the coarsest resolution (response grain). We show the theoretical basis for our method using simulated landscapes and the practical utility with a case study. Our method is available as the grainchanger r package. The simulations show that information about spatial structure is captured that would have been lost using a direct aggregation approach, and that our method is particularly useful in landscapes with spatial autocorrelation in the environmental predictor variable (e.g. fragmented landscapes) and when the scale-of-effect is small relative to the response grain. We use our data aggregation method to find the appropriate scale-of-effect of land cover diversity on Eurasian jay Garrulus glandarius abundance in the UK. We then model the interactive effect of land cover heterogeneity and temperature on G. glandarius abundance. Our method enables us quantify this interaction despite the different scales at which these factors influence G. glandarius abundance. Our data aggregation method allows us to integrate variables that act at varying scales into one model with limited loss of information, which has wide applicability for spatial analyses beyond the specific ecological context considered here. Key ecological applications include being able to estimate the interactive effect of drivers that vary at different scales (such as climate and land cover), and to systematically examine the scale dependence of the effects of environmental heterogeneity in combination with the effects of climate change on biodiversity

    Ultrafast changes in lattice symmetry probed by coherent phonons

    Full text link
    The electronic and structural properties of a material are strongly determined by its symmetry. Changing the symmetry via a photoinduced phase transition offers new ways to manipulate material properties on ultrafast timescales. However, in order to identify when and how fast these phase transitions occur, methods that can probe the symmetry change in the time domain are required. We show that a time-dependent change in the coherent phonon spectrum can probe a change in symmetry of the lattice potential, thus providing an all-optical probe of structural transitions. We examine the photoinduced structural phase transition in VO2 and show that, above the phase transition threshold, photoexcitation completely changes the lattice potential on an ultrafast timescale. The loss of the equilibrium-phase phonon modes occurs promptly, indicating a non-thermal pathway for the photoinduced phase transition, where a strong perturbation to the lattice potential changes its symmetry before ionic rearrangement has occurred.Comment: 14 pages 4 figure

    How Plasmonic excitation influences the LIPSS formation on diamond during multipulse femtosecond laser irradiation ?

    Full text link
    A generalized plasmonic model is proposed to calculate the nanostructure period induced by multipulse laser femtosecond on diamond at 800 nm wavelengths. We follow the evolution of LIPSS formation by changing diamond optical parameters in function of electron plasma excitation during laser irradiation. Our calculations shows that the ordered nanostructures can be observed only in the range of surface plasmon polariton excitation
    • …
    corecore