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Abstract
1.	 A	key	aim	of	ecology	is	to	understand	the	drivers	of	ecological	patterns,	so	that	we	
can	 accurately	 predict	 the	 effects	 of	 global	 environmental	 change.	 However,	 in	
many	cases,	predictors	are	measured	at	a	 finer	resolution	than	the	ecological	 re-
sponse.	We	therefore	require	data	aggregation	methods	that	avoid	loss	of	informa-
tion	on	fine-grain	heterogeneity.

2.	 We	present	a	data	aggregation	method	that,	unlike	current	approaches,	reduces	the	
loss	of	 information	on	fine-grain	spatial	structure	in	environmental	heterogeneity	
for	use	with	coarse-grain	ecological	datasets.	Our	method	contains	three	steps:	(a)	
define	 analysis	 scales	 (predictor	 grain,	 response	 grain,	 scale-of-effect);	 (b)	 use	 a	
moving	window	to	calculate	a	measure	of	variability	in	environment	(predictor	grain)	
at	the	process-relevant	scale	(scale-of-effect);	and	(c)	aggregate	the	moving	window	
calculations	 to	 the	coarsest	 resolution	 (response	grain).	We	show	the	 theoretical	
basis	for	our	method	using	simulated	landscapes	and	the	practical	utility	with	a	case	
study.	Our	method	is	available	as	the	grainchanger r	package.

3.	 The	simulations	show	that	information	about	spatial	structure	is	captured	that	would	
have	been	lost	using	a	direct	aggregation	approach,	and	that	our	method	is	particularly	
useful	in	landscapes	with	spatial	autocorrelation	in	the	environmental	predictor	varia-
ble	(e.g.	fragmented	landscapes)	and	when	the	scale-of-effect	is	small	relative	to	the	
response	grain.	We	use	our	data	aggregation	method	to	find	the	appropriate	scale-of-
effect	of	land	cover	diversity	on	Eurasian	jay	Garrulus glandarius	abundance	in	the	UK.	
We	then	model	the	interactive	effect	of	land	cover	heterogeneity	and	temperature	on	
G. glandarius	abundance.	Our	method	enables	us	quantify	this	interaction	despite	the	
different	scales	at	which	these	factors	influence	G. glandarius abundance.

4.	 Our	data	aggregation	method	allows	us	to	integrate	variables	that	act	at	varying	
scales	into	one	model	with	limited	loss	of	information,	which	has	wide	applicability	
for	spatial	analyses	beyond	the	specific	ecological	context	considered	here.	Key	
ecological	 applications	 include	 being	 able	 to	 estimate	 the	 interactive	 effect	 of	
drivers	 that	 vary	 at	 different	 scales	 (such	 as	 climate	 and	 land	 cover),	 and	 to	
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1  | INTRODUC TION

A	major	goal	of	ecology	 is	 to	understand	 the	drivers	of	ecological	
processes	(Begon,	Harper,	&	Townsend,	2006)	and	the	current	dra-
matic	decline	of	biodiversity	 (Butchart	et	al.,	2010).	There	 is	broad	
agreement	that	climate	is	one	of	the	key	factors	determining	the	pat-
terns	of	species	richness	(Field	et	al.,	2009),	and	that	climate	change	
is	a	significant	major	threat	to	biodiversity	(Thomas	et	al.,	2004).	It	
is	also	widely	acknowledged	that	land	use	change	is	the	largest	cur-
rent	threat	to	biodiversity	(Pimm	&	Raven,	2000).	Climate	and	land	
use	affect	biodiversity	additively	and	interactively	(Jetz,	Wilcove,	&	
Dobson,	2007;	Travis,	2003),	but	the	nature	of	these	interactions	is	
poorly	understood	(Newbold,	2018).	As	such,	integration	of	climate	
and	land	use	change	in	broadscale	biodiversity	analyses	is	required	
(Brook,	Sodhi,	&	Bradshaw,	2008;	Titeux	et	al.,	2017).	Additionally,	
there	 is	 increasing	 recognition	 that	 environmental	 heterogene-
ity—the	 complexity,	 diversity	 and	 structure	 in	 the	environment—is	
a	 near-	universal	 driver	 of	 ecological	 processes	 (Stein,	 Gerstner,	 &	
Kreft,	 2014).	 Disregarding	 environmental	 heterogeneity	 adversely	
affects	predictions	of	climate	change	effects	on	biodiversity	(Luoto	
&	Heikkinen,	 2008).	 Therefore,	 broadscale	modelling	 needs	 to	 in-
clude	 relative,	additive	and	 interactive	effects	of	climate,	 land	use	
and	environmental	heterogeneity	on	ecological	processes.

Integrating	climate	and	environmental	heterogeneity	into	eco-
logical	 modelling	 is	 complicated	 by	 the	 fact	 that	 the	 spatial	 res-
olution	 at	 which	 they	 affect	 ecological	 processes	 varies	 greatly	
(Newbold,	2018).	Advances	in	remote	sensing	mean	that	environ-
mental	data	are	increasingly	available	at	fine	spatial	and	temporal	
resolutions	across	broad	extents	(Bush	et	al.,	2017).	However,	bio-
diversity	data	vary	 in	 terms	of	 the	 spatial	 resolutions	 and	extent	
at	which	they	are	available	(Bellard,	Bertelsmeier,	Leadley,	Thuiller,	
&	Courchamp,	2012).	Despite	large	increases	in	data	mobilisation,	
biodiversity	data	availability	remains	poor	in	many	regions	(Amano,	
Lamming,	&	Sutherland,	2016).	For	example,	broad-	extent	data	on	
even	the	best	studied	groups	in	well-	studied	regions	(e.g.	European	
bird	atlases)	 are	 typically	only	 reliable	at	 resolutions	of	10	km	or	
coarser.

As	a	result,	predictor	variables	that	exert	their	effects	on	biodi-
versity	at	 relatively	 fine	 spatial	 resolutions	must	be	aggregated	 to	
the	coarser	grain	of	biodiversity	response	data.	While	not	problem-
atic	for	regional	climatic	variables	which	vary	at	broad	resolutions,	
this	is	an	issue	for	factors	with	finer	characteristic	scales	such	as	land	
use,	habitat	type	or	topography	(Bailey,	Boyd,	Hjort,	Lavers,	&	Field,	
2017).	In	addition,	the	inability	of	coarse-	grain	models	to	adequately	
represent	 environmental	 heterogeneity	 is	 a	 major	 factor	 driving	

inconsistencies	between	coarse-	grain	and	fine-	grain	predictions	of	
the	effects	of	climate	change	on	biodiversity	(Bellard	et	al.,	2012).

Currently,	broad-	extent	models	tend	to	measure	fine-	grain	het-
erogeneity	 in	coarse-	grain	models	via	coarse	aggregated	measures	
(Stein	&	Kreft,	2015;	Stein	et	al.,	2014)	such	as	number	or	percent	
cover	of	 land	cover	classes	(Algar,	Kharouba,	Young,	&	Kerr,	2009;	
Zuckerberg,	 Fink,	 La	 Sorte,	Hochachka,	&	Kelling,	 2016),	mean	 or	
range	of	elevation	(Graham,	Weinstein,	Supp,	&	Graham,	2017;	Kreft	
et	al.,	2006)	and	number	of	topographic	features	(Bailey	et	al.,	2017).	
In	these	‘direct’	data	aggregation	approaches,	the	summary	statistic	
is	calculated	at	the	coarser	grain	by	taking,	for	example,	the	mean	or	
standard	deviation	of	 the	 finer	grain	measurements.	However,	ag-
gregating	this	way	causes	a	loss	of	information	about	the	structure	
of	 spatial	 features	 (Kitron	 et	al.,	 2006;	 Turner,	O'Neill,	Gardner,	&	
Milne,	1989;	Wiens,	1989)	and	means	that	within-	grain	variation	for	
processes	that	vary,	or	exert	 their	effects,	over	a	 fine	scale	 is	 lost	
(Field	et	al.,	2009).	More	generally,	 aggregation	of	data	 into	 larger	
spatial	units	can	change	the	observed	strength	and/or	direction	of	
a	 relationship—this	 is	 known	 as	 the	modifiable	 areal	 unit	 problem	
(MAUP)	(Openshaw,	1984).	The	underlying	cause	of	the	MAUP	is	the	
smoothing	effect	of	averaging	data	that	are	spatially	heterogeneous	
(Gotway	&	Young,	2002).	Therefore,	to	incorporate	fine-	resolution	
environmental	heterogeneity	into	broad-	extent	models	effectively,	
there	is	a	need	for	data	aggregation	methods	that	preserve	informa-
tion	about	the	spatial	structure	of	heterogeneity.

An	 additional	 challenge	 to	 understanding	 the	 effects	 of	 envi-
ronmental	heterogeneity	on	biodiversity	 is	 that	 the	scale	at	which	
a	 species	 responds	 to	 the	 environment	 varies	 between	 species,	
and	 if	 species–environment	 relationships	are	modelled	at	 inappro-
priate	 scales,	we	 can	draw	 incorrect	 inferences	 from	our	 analyses	
(de	 Knegt	 et	al.,	 2010).	 However,	 finding	 the	 appropriate	 scale,	
known	as	the	scale-	of-	effect,	can	be	challenging	(Miguet,	Jackson,	
Jackson,	Martin,	&	Fahrig,	2016).	Scales-	of-	effect	are	typically	de-
termined	using	biological	understanding	of	an	organism's	ecological	
neighbourhood	(Addicott	et	al.,	1987).	However,	we	do	not	always	
have	a	priori	understanding	of	 these	 scales,	 and	many	predictions	
of	 the	 factors	 affecting	 scales-	of-	effect	 remain	 untested	 (Miguet	
et	al.,	2016).	In	landscape	ecology,	regressions	between	the	ecolog-
ical	response—measured	within	a	focal	patch	or	point—and	the	en-
vironmental	predictor	are	typically	conducted	at	multiple	scales	of	
the	predictor,	and	the	scale-	of-	effect	is	determined	as	that	with	the	
greatest	statistical	support	(Holland,	Bert,	&	Fahrig,	2004).	However,	
this	approach	is	not	suitable	when	the	spatial	grain	of	the	response	is	
larger	than	the	plausible	range	of	spatial	scales	at	which	biodiversity	
responds	to	environmental	heterogeneity.	For	example,	in	atlas	data,	

systematically	examine	the	scale	dependence	of	the	effects	of	environmental	het-
erogeneity	in	combination	with	the	effects	of	climate	change	on	biodiversity.
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when	a	species	abundance	is	measured	at	a	resolution	of	10	km,	the	
scale	at	which	the	species	responds	to	environmental	heterogeneity	
may	be	related	to	a	foraging	distance	of	<10	km	(Miguet	et	al.,	2016).

There	 is	 a	 literature	 on	 improving	 data	 aggregation	 methods;	
however,	this	does	not	link	the	scale	of	aggregation	to	the	relevant	
scale-	of-	effect	for	the	organism	or	process	of	 interest.	Most	stud-
ies	which	either	examine	the	effect	of	data	aggregation	(Raj,	Hamm,	
&	Kant,	2013;	Sun,	Congalton,	Grybas,	&	Pan,	2017;	Wu,	2004)	or	
propose	new	methods	for	data	aggregation	(Frazier,	2014;	Gardner,	
Lookingbill,	Townsend,	&	Ferrari,	2008)	focus	only	on	scaling	up	cat-
egorical	 representations	 of	 the	 landscape	 (i.e.	 land	 cover	 classes).	
Their	utility	 is	 evaluated	by	 their	 ability	 to	 recover	 fine-	resolution	
landscape	 pattern	 metrics	 at	 coarser	 resolutions.	 While	 stan-
dardised	data	 aggregation	 approaches	 are	 ideal	 for	 studying	 land-
scape	pattern	 and	 investigating	 drivers	 of	 landscape	 change,	 they	
are	not	appropriate	for	ecological	analysis	because	an	understanding	
of	the	scale	of	the	ecological	process	is	not	included.

Here,	we	present	a	novel	method	that,	for	the	first	time,	explicitly	
links	data	aggregation	to	landscape	ecological	theory.	We	show	that	
by	calculating	fine-	scale	variation	using	a	moving	window	at	a	scale	
appropriate	 to	 the	 ecological	 process	 under	 study	 (sensu	 Wiens,	
1989),	 before	 aggregating	 to	 the	 coarser	 scale,	 we	 obtain	 critical	
additional	 information	 on	 environmental	 heterogeneity	 (within-	
unit	variation)	over	simply	calculating	variation	at	the	coarser	scale.	
Our	approach	has	important	implications	as	it	enables—for	the	first	
time—statistically	 robust	 testing	 of	 hypotheses	 about	 the	 effects	
of	 fine-	grain	environmental	heterogeneity	on	ecological	processes	
which	have	been	measured	using	coarse-	grain,	broad-	extent	data.	
Specifically,	our	approach	enables	(a)	systematic	testing	of	the	scale	
dependence	of	 the	effects	of	 environmental	 heterogeneity	within	
broad-	extent	models	and	(b)	testing	of	the	interactive	and	additive	
effects	of	environmental	heterogeneity	within	broad-	extent	models	
at	ecologically	meaningful	scales.	Unlike	most	data	aggregation	ap-
proaches,	our	method	can	be	used	with	both	categorical	 (e.g.	 land	
cover)	and	continuous	data	(e.g.	elevation).

We	 first	 comprehensively	 test	 our	 data	 aggregation	 method	
using	simulations	to	understand	(a)	the	situations	in	which	our	data	
aggregation	 method	 provides	 additional	 information	 over	 direct	
aggregation	methods	and	(b)	the	situations	in	which	we	are	able	to	
identify	the	correct	scale-	of-	effect	using	our	method.	Understanding	
this	provides	a	theoretical	basis	for	our	approach	and	is	vital	to	en-
able	us	to	make	informed	a	priori	predictions	of	when	and	why	our	
data	aggregation	approach	is	most	likely	to	lead	to	meaningful	new	
insights.	We	 then	 test	 our	 approach	 empirically	 with	 an	 example	
of	 when	 environmental	 heterogeneity	 may	 influence	 an	 ecologi-
cal	 process:	 relative	 abundance	of	Eurasian	 jay	Garrulus glandarius 
across	Great	Britain.	G. glandarius	requires	a	combination	of	forest	
types:	broadleaf	for	foraging	and	coniferous	for	nesting	(Holden	&	
Cleeves,	2006).	Therefore,	the	spatial	structure	and	distribution	of	
these	habitats	within	the	bird's	neighbourhood	are	likely	to	influence	
their	abundance.	We	predict	heterogeneity	of	forest	type	calculated	
using	our	approach	would	be	a	stronger	predictor	than	simply	cal-
culating	 coarse-	grain	 measures	 at	 the	 landscape	 scale.	 Moreover,	

our	approach	enables	us	to	empirically	 identify	the	scale-	of-	effect	
of	heterogeneity	of	forest	type	on	G. glandarius	abundance;	and	2)	
assess	 the	 interactive	and	additive	effects	of	heterogeneity	at	 the	
most	 relevant	 scale	 in	 combination	 with	 other,	 coarse-	grain	 pre-
dictor	variables.	We	predict	that	the	best	fit	scale-	of-	effect	will	be	
~1	km	because	this	sits	between	the	home	range	size	(Pons	&	Pausas,	
2008)	and	average	dispersal	distance	(Paradis,	Baillie,	Sutherland,	&	
Gregory,	1998)	for	G. glandarius;	two	factors	hypothesised	to	influ-
ence	scale-	of-	effect	(Miguet	et	al.,	2016).

2  | MATERIAL S AND METHODS

2.1 | Aggregating environmental heterogeneity at 
organism- relevant scales

There	are	 three	steps	 involved	 in	our	moving	window	data	aggre-
gation	(MWDA)	approach:	 (a)	define	the	appropriate	scales	for	the	
ecological	process;	 (b)	define	 the	appropriate	measure	of	environ-
mental	heterogeneity	and	calculate	using	a	moving	window;	and	(c)	
summarise	 the	moving	window-	based	measure	at	 the	grain	of	 the	
response	(Figure	1).	Our	approach	is	appropriate	for	any	relationship	
between	an	environmental	factor	and	an	ecological	process	where	
the	scale-	of-	effect	 is	 finer	than	the	scale	of	analysis.	For	example,	
the	relationship	between	landscape	structure	and	occurrence,	abun-
dance,	fecundity	or	genetic	diversity	(Miguet	et	al.,	2016).	We	have	
written	an	r	package	named	grainchanger	(Graham,	2019a)	to	easily	
implement	our	method.	This	package	provides	 the	 tools	 to	 aggre-
gate	data	from	predictor	to	response	resolution	through	either	the	
MWDA	approach	(winmove_agg()	function)	or	the	direct	data	aggre-
gation	(DDA)	approach	(nomove_agg()	function).

First,	 we	 define	 the	 scales	 of	 analysis:	 the	 scale-	of-	effect,	 re-
sponse	 grain	 and	 predictor	 grain	 (Figure	1,	 panel	 1).	 The	 scale-of-
effect	 is	 the	 characteristic	 spatial	 scale	 at	 which	 an	 organism	 (or	
ecological	process)	responds	to	their	environmental	context.	We	can	
find	 such	 scales-	of-	effect	 by	 fitting	models	 at	multiple	 scales	 and	
selecting	the	best	fitting	using	information	criterion	such	as	Akaike's	
information	 criterion	 (AIC).	 The	 scale-	of-	effect	 of	 environmental	
heterogeneity	on	the	ecological	process	determines	the	size	of	the	
moving	window	in	our	method.	In	our	study,	we	define	the	size	of	the	
scale-	of-	effect	 as	 a	neighbourhood	of	x	 units,	where	x	 represents	
the	distance	from	the	focal	cell	to	the	edge	of	the	window	and	we	
use	the	Moore	neighbourhood	(queen's	rule,	Moore,	1962).

The	response grain	is	the	grain	at	which	the	ecological	process	is	
modelled,	and	as	such	the	resolution	into	which	the	fine-	scale	pre-
dictor	data	is	being	aggregated.	This	is	typically	limited	by	the	reso-
lution	of	the	broadscale	response	data,	or	is	the	resolution	at	which	
broadscale	patterns	in	the	ecological	process	manifest.	For	example,	
for	species	richness	patterns,	the	grain	size	should	reflect	the	size	of	
the	smallest	species	range	(Rahbek,	2005).

Next,	we	define	a	measure of environmental heterogeneity	that	will	
allow	us	to	quantify	environmental	heterogeneity	within	the	moving	
window	(set	by	the	scale-	of-	effect	of	the	ecological	process	of	inter-
est).	This	measure	should	capture	some	aspect	of	the	distribution	of	
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the	variable	 and	 not	 its	 central	 tendency.	 For	 continuous	variables,	
such	as	elevation	or	microclimate,	 simple	dispersion	measures	 such	
as	variance,	standard	deviation	and	range	can	be	used,	as	can	more	
complicated	 measures	 such	 as	 Rao's	 Q	 (Rocchini,	 Marcantonio,	 &	
Ricotta,	2017).	For	categorical	variables,	such	as	land	cover,	number	
of	 land	cover	classes	and	Simpson's	or	Shannon's	diversity	or	even-
ness	measures	(McGarigal	&	Marks,	1994)	are	widely	used	measures	
of	heterogeneity.	The	resolution	of	the	analysis	within	each	window	
should	correspond	to	 the	 thematic	 resolution	at	which	variability	 in	
the	environmental	variable	of	interest	is	captured	(predictor grain),	but	
may	 in	 fact	 be	 constrained	by	 the	 resolution	 at	which	 the	data	 are	
measured.	We	calculate	the	chosen	measure	using	a	moving	window	
with	neighbourhood	size	related	to	the	scale-	of-	effect	for	each	cell	of	
the	appropriate	grain	size	in	the	environmental	independent	variable.	
Each	predictor	grain	cell	in	the	raster	contains	the	measure	that	quan-
tifies	the	environmental	heterogeneity	of	the	surrounding	cells	within	
the	window	(Figure	1,	panel	2).

The	final	step	is	to	aggregate	the	window-	based	measures	of	en-
vironmental	heterogeneity	from	step	two	to	the	response	grain	by	
calculating	a	 summary	statistic	 (e.g.	mean,	median,	Figure	1,	panel	
3).	This	provides	a	measure	that	retains	more	information	about	spa-
tial	characteristics	of	environmental	heterogeneity	at	the	scale-	of-	
effect	on	the	ecological	process	when	aggregating	to	a	coarser	scale	
of	analysis	than	direct	data	aggregation	measures.

2.2 | Aggregating environmental heterogeneity in 
simulated landscapes

2.2.1 | Simulated data

In	 order	 to	 identify	 the	 situations	 under	 which	 our	 MWDA	 ap-
proach	 is	 useful,	 we	 used	 simulated	 datasets	 to	 answer	 two	

questions:	(a)	Under	what	levels	of	variability	in	spatial	autocorrela-
tion	and	neighbourhood	size	(scale-	of-	effect)	does	the	correlation	
between	our	MWDA	method	and	DDA	break	down?	 (b)	 In	which	
spatial	autocorrelation	scenarios	can	we	successfully	 identify	 the	
scale-	of-	effect?

For	each	dataset,	we	simulated	1,000	cells	at	the	response	grain	
resolution	 (10	km	×	10	km).	 For	 each	 response	grain	 cell,	we	 simu-
lated	 landscapes	 at	 the	 predictor	 grain	 resolution	 (25	m	×	25	m)	
using	the	fractal	Brownian	motion	method	(Travis	&	Dytham,	2004).	
Using	this	method,	the	spatial	autocorrelation	of	a	landscape	is	con-
trolled	 by	 the	 fractal	 dimension	 parameter	where	 a	 value	 close	 to	
zero	generates	an	uncorrelated	(i.e.	random	and	highly	fragmented)	
surface,	and	a	value	of	one	a	highly	autocorrelated	 (i.e.	aggregated	
and	 clumped)	 landscape.	 Each	 25	m	×	25	m	 cell	 has	 a	 continuous	
value	 ranging	between	0	and	1.	We	also	created	a	 second	dataset	
where	each	25	m	×	25	m	cell	has	a	discrete	value	between	0	and	4,	
representing	five	land	cover	classes.	We	created	these	by	generating	
a	vector	of	class	weightings	(representing	the	proportion	of	each	land	
cover	class)	and	assigning	the	continuous	values	to	classes	based	on	
these	weightings.	For	example,	 the	vector	containing	0.5,	0.25	and	
0.25	would	assign	values	[0,	0.5]	to	class	0,	values	[0.5,	0.75]	to	class	
1,	and	values	[0.75,	1]	to	class	2.	The	continuous	landscapes	repre-
sent	 a	 fine-	scale	 continuous	environmental	variable	 such	 as	 eleva-
tion,	vegetation	indices	or	microclimate.	The	categorical	landscapes	
represent	fine-	scale	categorical	environmental	variables	such	as	land	
cover,	suitable	habitat	or	soil	type.	Landscape	simulations	and	clas-
sification	were	done	using	the	NLMR	and	landscapetools	r	packages	
(Sciaini,	Fritsch,	Scherer,	&	Simpkins,	2018).

For	five	scenarios	of	spatial	autocorrelation,	we	simulated	100	
replicate	datasets	as	detailed	above.	These	scenarios	were	 (a)	no	
spatial	 autocorrelation	 (fractal	 dimension	=	0.1	 for	 all	 response	
grain	 landscapes);	 (b)	 low,	 varied	 spatial	 autocorrelation	 (fractal	

F IGURE  1 Graphical	representation	of	the	moving	window	data	aggregation	(MWDA)	method.	In	calculating	the	MWDA	measure,	
three	aspects	of	scale	are	considered.	Predictor	grain	is	the	characteristic	spatial	scale	of	the	predictor	variable,	that	is,	the	resolution	of	
the	environmental	data;	scale-	of-	effect	determines	the	appropriate	scale	of	the	relationship	between	predictor	and	response,	for	example,	
an	ecological	neighbourhood;	response	grain	is	the	grain	of	the	unit	into	which	you	are	predicting,	that	is,	the	resolution	of	the	response	
variable.	Note	that	the	colour	scale	is	unitless.	Yellow	cells	represent	‘high’	values	and	dark	blue	cells	‘low’	values
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dimension	 in	 the	 range	0.1–0.5);	 (c)	varied	spatial	autocorrelation	
(fractal	 dimension	 in	 the	 range	0.1–1);	 (d)	 high,	 varied	 spatial	 au-
tocorrelation	 (fractal	 dimension	 in	 the	 range	 0.5–1);	 and	 (e)	 high	
spatial	autocorrelation	(fractal	dimension	=	1	for	all	response	grain	
landscapes).

Next,	we	calculated	variability	within	a	moving	window	at	four	
different	neighbourhood	sizes:	500	m	(1%	of	response	grain),	1	km	
(4%),	1.5	km	(9%)	and	3.5	km	(49%).	To	avoid	edge	effects,	we	pad-
ded	each	landscape	by	the	neighbourhood	size	to	create	the	effect	
of	a	torus:	an	infinite	surface	where	cells	on	one	edge	neighbour	cells	
on	 the	 opposite	 edge.	We	 calculated	 variance	 for	 the	 continuous	
landscapes	 and	 Shannon	 evenness	 for	 the	 categorical	 landscapes.	
We	calculated	Shannon	evenness	using

pi	is	the	proportion	of	land	cover	class	 i and S	is	the	total	number	of	
land	 cover	 classes	 (McGarigal	 &	 Marks,	 1994;	 Pielou,	 1969).	 In	 all	
cases,	we	aggregated	 the	moving	window	measure	 to	 the	 response	
grain	 by	 taking	 the	 mean	 across	 each	 landscape,	 resulting	 in	 the	
MWDA	measure.	Finally,	we	calculated	the	same	measures	using	DDA	
(i.e.	by	directly	calculating	the	variance	and	Shannon	evenness	for	each	
whole	landscape).

2.2.2 | Correlation between MWDA and 
DDA approaches

In	order	to	understand	the	kinds	of	landscapes	where	using	our	data	
aggregation	 approach	 provides	 different	 information	 to	 standard	
approaches,	we	 calculated	 the	 Spearman	 correlation	 between	 the	
MWDA	and	DDA	measures	for	each	spatial	autocorrelation	scenario	
and	neighbourhood	size.

2.2.3 | Identifying the scale- of- effect

In	 order	 to	 understand	 the	 specific	 circumstances	 (degree	 of	 spa-
tial	autocorrelation,	scale-	of-	effect	and	signal	to	noise	ratio)	under	
which	we	can	successfully	identify	the	scale-	of-	effect,	we	also	simu-
lated	a	response	variable	for	each	dataset	and	neighbourhood	size.	
We	calculated	this	response	variable	as	yw	=	MWDAw + ɛ	where	yw 
is	 the	 response	 variable	 and	MWDAw	 is	 the	MWDA	measure	 for	
neighbourhood	size	w and ɛ ∼ N(0,	σ).	We	use	three	levels	of	σ:	low,	 
moderate	and	high.	Low	σ	 represents	data	with	minimal	noise	and	
was	calculated	as	the	first	percentile	of	the	MWDA	measure	within	
each	 spatial	 autocorrelation	 scenario	 and	 window	 combination;	
moderate	σ	 represents	data	with	a	moderate	amount	of	noise	and	
was	the	10th	percentile	of	the	MWDA	measure;	high	σ	 represents	
data	with	a	large	amount	of	noise	and	is	the	median	of	the	MWDA	
measure.

For	each	yw,	we	fit	a	univariate	linear	model	with	each	MWDAw 
as	 the	 covariate	 and	use	AIC	 to	 select	 the	best-	fitting	model.	We	
then	calculate	the	%	of	replicates	in	which	the	model	containing	the	
correct	MWDAw,	and	thus	scale-	of-	effect,	was	selected.

2.3 | Case study: relative abundance of 
Garrulus glandarius

2.3.1 | Data

We	obtained	relative	abundance	data	for	Eurasian	Jay	G. glandar-
ius	 from	the	British	Trust	 for	Ornithology	2007–2011	Bird	Atlas	
(Balmer	et	al.,	2013),	which	are	available	at	10	km	×	10	km	resolu-
tion.	 For	 this	 citizen	 science	project,	 volunteers	 undertook	 two	
1-	hr	 timed	 surveys	 in	 at	 least	 eight	2	km	×	2	km	 in	every	10	km	
cell	in	Britain.	During	these	timed	surveys,	volunteers	counted	all	
birds	encountered;	however,	for	this	study,	we	convert	the	counts	
to	presence/absence	and	determine	 the	proportion	of	surveyed	
2	km	×	2	km	cells	that	were	occupied	for	each	10	km	cell.	These	
data	provide	an	index	of	relative	abundance	for	Britain	at	a	reso-
lution	of	10	km	and	have	previously	been	used	to	map	major	gra-
dients	in	abundance	(Gibbons,	Reid,	&	Chapman,	1993).

We	obtained	land	cover	data	from	the	25	m	resolution	Land	Cover	
Map	 (LCM)	2007	 (Morton	et	al.,	2011),	which	 is	 the	closest	match	to	
the	2007–2011	abundance	index	data.	LCM	2007	is	a	remotely	sensed	
dataset	that	describes	24	land	cover	classes.	For	each	10-	km	cell,	we	cal-
culated	forest	%	and	urban	%	from	the	LCM	2007	data.	We	downloaded	
mean	annual	 temperature	 (bio1)	 from	WorldClim	 (Hijmans,	Cameron,	
Parra,	 Jones,	&	 Jarvis,	 2005)	 at	 5	 arcminute	 resolution	 (~10	km)	 and	
matched	to	the	corresponding	10-	km	cell.	We	obtained	a	full	set	of	re-
sponse	and	covariates	for	n = 1,719	10-	km	cells	(Figure	2).

2.3.2 | Aggregating environmental heterogeneity

For	the	G. glandarius	case	study,	we	aggregated	the	two	forest	types	
in	LCM	2007	from	25	m	to	10	km	resolution	using	Shannon	evenness	
of	broadleaf	and	coniferous	forest	as	the	measure	of	environmental	
heterogeneity	 with	 both	 a	 MWDA	 and	 a	 DDA	 approach	 (MWDA	
Shannon	and	DDA	Shannon	respectively).	We	excluded	all	other	land	
cover	classes	from	the	calculation.	In	order	to	identify	the	appropriate	
scale-	of-	effect,	we	calculated	MWDA	Shannon	for	six	neighbourhood	
sizes:	50	m,	100	m,	500	m,	1,000	m,	1,500	m	and	3,500	m.	We	aggre-
gated	this	measure	into	a	response	grain	of	10	km	resolution	to	match	
the	G. glandarius	abundance	data.	For	DDA	Shannon,	we	calculated	
Shannon	evenness	of	forest	types	for	the	entire	10	km	cell.

2.3.3 | Statistical analyses

The	G. glandarius	relative	abundance	index	is	a	non-	binomial	propor-
tion	variable.	As	such,	we	applied	a	logit	transform	to	the	index	and	
modelled	using	ordinary	linear	regression	(following	Warton	&	Hui,	
2011).	We	 included	Shannon,	 forest	%,	urban	%,	 temperature	and	
the	 interaction	of	 temperature	with	Shannon	as	covariates.	We	fit	
this	model	for	each	of	the	six	MWDA	measure	and	the	DDA	Shannon	
measure.	 In	 order	 to	 identify	 the	 appropriate	 scale-	of-	effect,	 we	
used	AIC	and	BIC	to	find	the	best-	fitting	model.

All	 analyses	were	 performed	 in	 r	 version	 3.5.1	 (R	 Core	 Team,	
2018).

(1)J� =
(

−
∑

pi ln pi

)

∕ ln S,
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3  | RESULTS

3.1 | Aggregating environmental heterogeneity in 
simulated landscapes

3.1.1 | Correlation between MWDA and 
DDA approaches

Correlation	 between	 MWDA	 and	 DDA	 measures	 was	 lowest	 for	
smaller	 neighbourhood	 sizes	 and	 in	 varied	 spatial	 autocorrelation	
scenarios	 (Figure	3a).	The	pattern	was	 similar	between	categorical	
and	continuous	variables.	For	the	continuous	variable,	there	was	a	
weak	negative	 correlation	between	MWDA	and	DDA	 for	 the	 var-
ied,	 and	 low,	 varied	 spatial	 autocorrelation	 scenarios	 at	 the	 small-
est	 neighbourhood	 size.	 The	 reason	 for	 this	 is	 that	 high	 values	 of	
spatial	autocorrelation	result	in	low	MWDA	and	high	DDA,	whereas	
the	 opposite	 is	 the	 case	 for	 low	 values	 of	 spatial	 autocorrelation	
(Appendix	SI,	Figure	AI.2).

3.1.2 | Identifying the scale- of- effect

In	most	 spatial	 autocorrelation	 scenarios,	 neighbourhood	 sizes	 and	
levels	 of	 noise	 in	 the	 data,	 we	were	 able	 to	 identify	 the	 scale-	of-	
effect	with	reasonable	accuracy	(Figure	3b).	We	had	the	least	ability	

to	detect	the	correct	scale-	of-	effect	in	the	no	spatial	autocorrelation	
scenario	and	at	intermediate	window	sizes	(4%	and	9%	of	the	land-
scape).	We	were	better	 able	 to	 identify	 the	 correct	 scale-	of-	effect	
when	the	predictor	variable	was	continuous,	rather	than	categorical:	
mean	%	correct	for	each	noise	 level	ranged	from	89.6%	in	the	high	
noise	data	to	99.5%	in	the	low	noise	data	for	the	continuous	variable,	
but	74%–95%	for	the	categorical	variable.	The	scenario	in	which	we	
had	least	accuracy	in	detecting	the	scale-	of-	effect	was	the	high	noise,	
categorical,	no	spatial	autocorrelation	scenario	when	the	window	size	
was	4%	of	the	landscape	(15%	of	replicates	correctly	identified).

To	 set	 the	 noise	 levels	 in	 the	 context	 of	 an	 empirical	 analysis,	
we	 calculated	 the	R2	 values	 for	 the	model	with	 the	 correct	 scale-	
of-	effect	for	each	spatial	autocorrelation	scenario,	window	size	and	
noise	level.	The	models	in	the	low	noise	scenario	had	R2	values	in	the	
range	0.41–0.91.	The	models	in	the	moderate	noise	scenario	had	R2 
values	in	the	range	0.1–0.61.	The	models	in	the	high	noise	scenario	
had	R2	values	in	the	range	0.03–0.28.

3.2 | Case study: Garrulus glandarius abundance

The	best-	fitting	model	 judged	by	both	AIC	and	BIC	was	 that	 con-
taining	the	MWDA	measure	of	Shannon	diversity	with	a	neighbour-
hood	size	of	100	m	(Table	1).	There	was	little	to	distinguish	between	
the	MWDA	measure	at	50	m,	100	m	and	500	m	(ΔAIC	&	ΔBIC	<	3),	

F IGURE  2 Study	site	and	distribution	
of	Garrulus glandarius	relative	abundance,	
where	a	value	of	one,	represented	by	the	
lighter	colours,	is	the	highest	abundance	
and	values	approaching	zero,	represented	
by	the	darker	colours,	are	cells	with	the	
lowest	abundance	(a).	Mean	centred	
and	scaled	values	of	the	four	predictor	
variables	(b).	MWDA	Shannon	is	shown	at	
the	100	m	scale-	of-	effect
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suggesting	that	the	true	scale-	of-	effect	 is	 in	this	range.	The	model	
containing	the	direct	approach	to	data	aggregation	(DDA	Shannon)	
had	the	least	support.

The	model	containing	MWDA	Shannon	(100	m)	explained	a	rea-
sonable	amount	of	variation	 in	 relative	abundance	of	G. glandarius 
(R2	=	0.37).	All	β	 coefficients	were	statistically	significant	and	pos-
itive,	with	 the	strongest	 relationships	being	with	MWDA	Shannon	
(100	m)	and	temperature.	We	also	found	a	small	positive	interaction	
between	MWDA	Shannon	(100	m)	and	temperature	(Figure	4).	This	

interaction	was	 significant	 for	 all	 values	 of	MW	 Shannon	 and	 for	
all	but	the	lowest	temperature	values	(<6.5°C;	calculated	using	the	
Johnson–Neyman	interval;	Johnson	&	Fay,	1950).

4  | DISCUSSION

Our	results	provide	a	compelling	argument	for	using	our	novel,	three-	
step	 approach	 to	evaluate	 the	effects	of	 fine-	scale	 environmental	

F IGURE  3 Spearman's	ρ between	the	moving	window	(MWDA)	and	direct	(DDA)	data	aggregation	measures	for	each	spatial	
autocorrelation	scenario	and	neighbourhood	size	(a).	Percentage	of	replicates	where	the	correct	scale-	of-	effect	was	identified	for	each	
spatial	autocorrelation	scenario	and	neighbourhood	size	(b)
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heterogeneity	on	coarse-	scale	ecological	processes.	One	key	reason	
why	fine-	grain	environmental	heterogeneity	is	often	considered	un-
important	within	coarse-	grain	models	is	because	the	within-	unit	var-
iability	is	lost	when	aggregating	to	coarse	grains	(Field	et	al.,	2009).	
By	(a)	defining	the	relevant	scale(s)	at	which	heterogeneity	matters;	
(b)	using	a	moving	window	to	calculate	environmental	heterogene-
ity;	and	 (c)	aggregating	to	the	scale	of	the	response,	our	approach	
provides	important	additional	information	over	existing	approaches	
by	capturing	such	within-	unit	variability.	Our	approach	is	most	use-
ful	when	an	understanding	of	the	effect	of	heterogeneity	on	broad-
scale	patterns	 is	the	goal	of	a	study,	and	there	is	a	scale	mismatch	
between	the	predictor	and	response	data.	Additionally,	we	note	that	
through	modelling	at	the	appropriate	scale,	we	gain	a	greater	under-
standing	of	mechanism	(Levin,	1992;	Wiens,	1989),	which	in	turn	can	
increase	model	transferability	and	predictive	power	(Scheiner	et	al.,	
2000;	Yates	et	al.,	2018).

Our	simulations	provide	the	theoretical	basis	of	our	data	aggre-
gation	method.	They	show	that	our	method	is	particularly	useful	in	
landscapes	where	within-	unit	heterogeneity	is	variable—or	at	 least	
where	all	coarse-	grain	cells	display	high	within-	unit	heterogeneity.	
Additionally,	our	method	has	greater	utility	when	the	scale-	of-	effect	
is	 small	 relative	 to	 the	 response	 grain.	 Given	most	 environmental	
variables	display	some	level	of	clumping	or	aggregation	(Diniz-	Filho,	
Bini,	&	Hawkins,	2003),	and	this	is	variable	across	broadscales	(Wu,	
2004),	it	is	likely	that	our	method	is	widely	applicable.	The	low	cor-
relation	 between	 the	MWDA	 and	DDA	measures	 in	most	 scenar-
ios	for	smaller	neighbourhood	sizes	shows	that	our	method	retains	
more	 information	 about	 spatial	 structure	 than	 direct	 approaches.	
This	is	key	information	if	we	are	to	understand	mechanism	in	ecol-
ogy	 (Wiens,	 1989)	 as	 it	means	 that	 the	MWDA	measures	 capture	
environmental	 heterogeneity	 at	 the	 scale	 at	 which	 the	 ecological	
process	responds	to	it.	Additionally,	we	showed	that	measures	cal-
culated	using	our	approach	are	most	correlated	with	and	least	able	

to	 detect	 the	 correct	 scale-	of-	effect	when	 no	 cells	 display	 spatial	
autocorrelation.	 It	 is	unlikely	 that	 this	would	occur	 in	 reality	given	
most	landscapes	display	some	level	of	within-	unit	heterogeneity	at	
coarse	 resolutions.	 The	 smaller	 correlation	 between	 MWDA	 and	
DDA	measures,	and	the	greater	ability	to	detect	the	correct	scale-	
of-	effect	at	smaller	neighbourhood	sizes,	indicates	that	it	is	more	im-
portant	to	examine	environmental	heterogeneity	at	an	appropriate	
scale	 in	 landscapes	with	a	higher	 level	of	environmental	heteroge-
neity.	This	is	in	agreement	with	the	assertion	that	changing	scale	in	
spatially	heterogeneous	landscapes	can	drastically	alter	conclusions	
(Scheiner	et	al.,	2000;	Wu,	2004)	and	that	the	nature	of	the	effect	
of	changing	scale	depends	on	the	form	of	heterogeneity	in	the	land-
scape	(Wiens,	1989).

In	 order	 to	 make	 accurate	 inferences	 (Scheiner	 et	al.,	 2000)	
and	thus	gain	a	greater	mechanistic	understanding	of	the	effect	of	
environmental	 drivers	 (Wiens,	1989),	 it	 is	 key	 that	we	understand	
the	appropriate	scale	at	which	to	model	processes.	While	classical	
multi-	scale	landscape	ecology	analyses	may	be	employed	when	the	
response	 is	measured	 at	 point	 locations	 (Holland	 et	al.,	 2004),	 no	
analogous	methods	currently	exist	when	we	only	have	coarse-	grain	
(i.e.	larger	than	plausible	scales-	of-	effect)	response	data.	Using	sim-
ulations,	we	showed	that	our	data	aggregation	approach	addresses	
this,	as	it	is	suitable	for	detecting	the	correct	scale-	of-	effect	in	most	
cases	for	coarse-	grain	response	data.	Our	case	study	demonstrated	
this	in	practice,	finding	that	the	scale	at	which	forest	cover	diversity	
affects	G. glandarius	abundance	is	in	the	range	of	a	50–500	m	neigh-
bourhood	size.	This	fits	with	our	prediction	that	the	scale-	of-	effect	
would	be	related	to	the	territory	size	and	dispersal	distance	(Andrén,	
1990;	Paradis	et	al.,	1998).

A	 key	benefit	 of	 being	 able	 to	 include	 information	 about	 fine-	
scale	environmental	heterogeneity	in	a	coarse-	scale	model	is	that	we	
can	evaluate	the	interactive	effects	of	climate	and	land	cover,	which	
is	 considered	 a	 difficult	 problem	 and	 open	 research	 area	 (Bellard	
et	al.,	 2012;	 Jetz	 et	al.,	 2007;	 Newbold,	 2018;	 Travis,	 2003).	 We	
found	an	interactive	effect	between	spatial	heterogeneity	of	forest	
type	and	temperature,	which	suggests	that	at	higher	temperatures,	
the	influence	of	forest	diversity	on	G. glandarius	abundance	is	stron-
ger.	This	means	 that	management	 for	 forest	diversity	will	 become	
more	important	under	global	climate	change,	reflecting	theoretical	
and	expert-	based	expectation	(Heller	&	Zavaleta,	2009).

In	 addition	 to	 deeper	 understanding	of	 environmental	 change,	
our	approach	also	allows	us	to	make	conservation	relevant	conclu-
sions	about	the	scale	at	which	to	manage	landscapes.	The	positive	ef-
fect	of	forest	diversity	on	relative	abundance	of	G. glandarius,	when	
calculated	using	a	moving	window	with	radius	100	m,	suggests	that	
management	efforts	should	aim	to	maintain	an	even	balance	of	both	
broadleaved	and	coniferous	forests	at	this	scale	in	order	to	benefit	
populations	of	G. glandarius.	The	model	selection	approach	allowed	
us	to	establish	that	it	was	the	local-	scale	forest	diversity	driving	G. 
glandarius	abundance.	However,	had	we	calculated	forest	diversity	
at	the	response	grain	size	(10	km	x	10	km),	we	may	have	concluded	
that	this	was	an	appropriate	scale	to	manage	woodlands	for	G. glan-
darius.	Such	management	may	not	capture	habitat	diversity	at	 the	

TABLE  1 Results	of	the	model	comparison.	We	calculated	
Shannon	diversity	of	forest	cover	type	using	our	moving	window	
data	aggregation	method	(MWDA	Shannon)	and	direct	data	
aggregation	methods	(DDA	Shannon).	We	calculated	MWDA	
Shannon	at	six	scales	(defined	by	the	size	of	the	moving	window).	
We	then	fit	seven	models	of	Garrulus glandarius abundance 
changing	only	the	Shannon	diversity	measure	in	each.	Model	
performance	was	evaluated	using	Akaike's	information	Criterion	
(AIC)	and	Bayesian	Information	Criterion	(BIC).	This	allowed	us	to	
identify	the	scale	at	which	G. glandarius	most	strongly	responds	to	
Shannon	diversity	of	forest	cover	type

Shannon measurement AIC BIC

MWDA	Shannon	(100	m) 3,975.0 4,013.2

MWDA	Shannon	(50	m) 3,976.4 4,014.5

MWDA	Shannon	(500	m) 3,977.4 4,015.6

MWDA	Shannon	(1,000	m) 3,984.7 4,022.8

MWDA	Shannon	(1,500	m) 3,991.0 4,029.1

MWDA	Shannon	(3,500	m) 4,001.9 4,040.1

DDA	Shannon 4,005.0 4,043.2
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relevant	scale	and	lead	to	inappropriate	management	(Turner,	1989;	
Wiens,	1989).

Although	using	a	moving	window	prior	to	data	aggregation	is	not	
necessarily	new,	studies	tend	to	favour	a	one-	size-	fits-	all	approach	by	
using	a	3	×	3-	cell	window.	For	example,	topographic	measures	such	as	
topographic	position	 index	and	 terrain	 ruggedness	 index	have	been	
calculated	 in	 such	a	way	 to	 create	multipurpose	datasets	 for	use	 in	
biodiversity	modelling	(Amatulli	et	al.,	2018)	or	to	examine	the	effect	
of	topographic	heterogeneity	on	tropical	forest	structure	and	compo-
sition	(Jucker	et	al.,	2018).	Similarly,	a	global	standardized	dataset	of	
habitat	 heterogeneity	was	 calculated	 using	 information	 on	 adjacent	

pixels,	but	without	consideration	of	the	scale	of	the	ecological	process	
(Tuanmu	&	Jetz,	2014).	Adopting	a	one-	size-	fits-	all	 approach	means	
that	the	appropriate	ecological	scale—a	key	factor	in	gaining	a	mecha-
nistic	understanding	(Levin,	1992;	Wiens,	1989)—is	not	incorporated.	
Our	MWDA	method	builds	on	these	approaches	by	explicitly	defining	
the	scale	at	which	heterogeneity	affects	the	ecological	process	within	
the	analysis.	Multi-	scale	moving	window	approaches	have	been	used	
in	 landscape-	scale	analyses	using	 response	data	available	at	 a	point	
or	 patch	 scale	 (e.g.	 Bellamy,	 Scott,	 &	 Altringham,	 2013;	 Osborne,	
Alonso,	&	Bryant,	2001;	Wilson,	O'Connell,	Brown,	Guinan,	&	Grehan,	
2007).	Our	MWDA	approach	moves	the	logic	from	these	two	separate	

F IGURE  4 Partial	effect	plots	for	Garrulus glandarius	relative	abundance.	Interaction	plots	are	shown	for	MW	Shannon	and	temperature;	
estimates	are	provided	for	±1	SD	of	the	moderating	variable
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literatures	 forward	 and	 provides	 a	method	 for	 integrating	 data	 that	
vary	at	different	scales	in	a	broad-	extent	analysis.	At	present,	running	
our	MWDA	method	at	very	fine	grains	across	global	extents	is	difficult	
without	 access	 to	 high-	performance	 computing	 facilities.	 However,	
ongoing	improvements	in	both	the	efficiency	of	r	for	analysing	large	
datasets—which	we	will	implement	in	future	versions	of	grainchanger—
and	improvements	in	computer	technology	and	accessibility	mean	that	
this	is	unlikely	to	be	an	issue	in	the	near	future.

To	 fully	 understand	 the	 effect	 on	 ecological	 processes	 of	 global	
change	drivers	at	multiple	scales,	we	must	develop	an	understanding	of	
their	interactions	and	develop	modelling	approaches	which	incorporate	
these	interactions	at	an	appropriate	scale	(Newbold,	2018;	Travis,	2003).	
We	have	outlined	a	method	for	aggregating	data	on	fine-	scale	processes	
that	retain	information	about	the	underlying	spatial	structure	in	environ-
mental	heterogeneity	at	the	appropriate	scale	for	the	ecological	process	
being	analysed.	This	is	crucial	if	we	are	to	combine	spatial	data	at	multi-
ple	scales	and	utilise	the	growing	availability	of	fine-	resolution	environ-
mental	data	and	broad-	extent	biodiversity	data.	For	simplicity,	we	used	
a	generalised	linear	modelling	framework	in	our	analyses.	However,	vari-
ables	generated	using	our	data	aggregation	method	could	be	used	as	an	
input	to	more	complex	machine-	learning	approaches	to	species	distribu-
tion	(Elith	et	al.,	2006);	or	to	community	modelling	approaches,	such	as	
generalised	dissimilarity	modelling	(Ferrier,	Manion,	Elith,	&	Richardson,	
2007),	and	hierarchical	modelling	of	species	communities	(Ovaskainen	
et	al.,	2017).	We	used	model	selection	to	find	the	scale-	of-	effect;	how-
ever,	this	could	be	found	using	machine-	learning	methods	that	can	han-
dle	 correlated	variables	 (Bradter,	Kunin,	Altringham,	Thom,	&	Benton,	
2013)	or	Bayesian	approaches	(Stuber,	Gruber,	&	Fontaine,	2017)	that	
allow	variables	generated	at	multiple	scales	of	effect	to	be	incorporated	
into	one	model.	Additionally,	our	method	has	broader	applicability	be-
yond	spatial	ecology.	We	focussed	here	on	spatial	scale;	however,	our	
method	could	be	applied	to	solve	similar	issues	around	temporal	scales.	
Combining	data	at	 incompatible	spatial	and	 temporal	 scales	 is	a	chal-
lenge	within	many	fields	including	geography,	sociology,	earth	and	en-
vironmental	sciences,	agriculture	and	geology	(Gotway	&	Young,	2002).	
Our	method	 has	 the	 potential	 to	 be	 applied	 to	 similar	 problems	 in	 a	
wider	range	of	contexts	and	disciplines	than	those	examined	here.
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