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obtained using the absolute intensity changes with those obtained using the relative intensity 

changes. The fourth section presents the model analysis. Figure S4 presents the 4 basic motions 

considered, Figure S5 demonstrates that their application to the open-ring geometry results in the 

closed-ring one, and Figure S6 shows the range of structures that they generate. Figure S7 compares 

the best matching structure for the time delays before t0 with the one for the late time delays. The 

fifth section presents the details of the calculation of the ground state structures. The optimized 

geometries of the four molecules included in the unit cell are shown in Figure S8, first (a) with all 

four in the open-ring state, and then (b) after inducing the cyclization in one of them. Finally, the 

sixth section presents the details of the calculation of the excited state open-ring intermediate 

structure. Figure S9 shows the partitioning of the system into CASSCF and DFT regions and Figure 

S10 shows the optimized geometry. This material is available free of charge via the Internet at 

http://pubs.acs.org 

Graphical abstract: 

 

Abstract: 

The photoinduced ring-closing reaction in diarylethene, which serves as a model system for 

understanding reactive crossings through conical intersections, was directly observed with atomic 

resolution using femtosecond electron diffraction. Complementary ab initio calculations were also 

performed. Immediately following photoexcitation, subpicosecond structural changes associated with 

the formation of an open-ring excited-state intermediate were resolved. The key motion is the 

rotation of the thiophene rings, which significantly decreases the distance between the reactive 

carbon atoms prior to ring closing. Subsequently, on the few picosecond time scale, localized 

torsional motions of the carbon atoms lead to the formation of the closed-ring photoproduct. These 

direct observations of the molecular motions driving an organic chemical reaction were only made 

possible through the development of an ultrabright electron source to capture the atomic motions 

within the limited number of sampling frames and the low data acquisition rate dictated by the 

intrinsically poor thermal conductivity and limited photoreversibility of organic materials. 

Keywords: 

Femtosecond electron diffraction, Photochemical reactions, Barrier crossing dynamics, Far from 

equilibrium motions, QM/QM simulations, CASSCF 

http://pubs.acs.org/


Jean-Ruel et al. Ring Closing Reaction in Diarylethene, 2013 

 

3 
 

I. Introduction 

Directly resolving the atomic motions involved in various physical, chemical, and biological 

processes has been achieved through the recent development of ultrabright and ultrafast electron 

11-14. 

More recently however, the molecular motions involved in the insulator-to-metal phase transition 

and X-ray sources1-3. The strategy consists of exciting the system under study with fs laser pulses 

and probing its structure via diffraction with synchronized ultrashort electron or X-ray bunches; 

by varying the time delay between the laser and probe pulses, the recorded diffraction patterns 

monitor the structural changes. The first studies that attained sufficient diffraction orders to 

atomically resolved structural dynamics on the relevant time scales focused on relatively simple 

condensed-phase systems with well defined changes in order parameters4-10. The challenge has 

been to extend this approach to labile and weakly scattering organic and biological systems in 

which the structure changes are more complex. Various photoinduced processes in organic 

crystals have been investigated with time-resolved X-ray diffraction, but so far the limited time 

resolution (probe pulses on the order of 50 ps or longer) has generally prevented the direct 

observation of the primary structural dynamics occurring on subpicosecond time scales

of a charge-transfer organic system, (EDO-TTF)2PF6, were successfully resolved with fs 

resolution using ultrafast electron diffraction (UED)15. The structural changes in this organic 

system were driven by a photoinduced charge transfer process.  Nevertheless, despite the 

numerous successes of ultrafast diffraction techniques, the direct observation of the structural 

changes relevant to understanding chemical reaction mechanisms, as opposed to phase 

transitions,  has not been achieved to date with sufficient time resolution to resolve the key 

dynamics involved. This work takes advantage of the recent advance in electron source 

brightness to directly observe the atomic motions driving reaction dynamics.  This new window 
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on chemistry will allow general principles to be established in understanding how far from 

equilibrium fluctuations couple during barrier crossing events that lead to an enormous reduction 

in dimensionality and ultimately make chemical reaction concepts transferrable from one 

molecular system to another. 

 

Of particular interest are solid state organic photochemical reactions. Although great efforts 

have been deployed towards gas phase diffraction studies16-18, the time resolution attained to date 

is insufficient (several ps) to capture the relevant motions, and the level of detail with respect to 

spatial resolution achievable with time-resolved crystallography is incomparable. Moreover, the 

dynamics are generally better defined in the crystalline state due to the homogeneous 

intermolecular potential14, 19. There are, nevertheless, important challenges with performing 

20. All these characteristics impose strong conditions on the source brightness. 

 

A notable example of a solid state organic photochemical reaction occurs in  

diarylethene compounds. Diarylethenes with heterocyclic aryl rings are a family of photochromic 

molecules which undergo photoinduced ring closing (cyclization) and ring opening 

(cycloreversion) of the molecular system in both solution and the crystalline phase21. 

Photochromism refers to their ability to undergo such photoreversible isomerization between two 

ultrafast diffraction studies of solid state organic photochemical reactions. The vast majority of 

molecular crystals are insulators and they usually have low melting points. The consequence is 

that low repetition rates must be used to avoid cumulative heating effects that induce both crystal 

strain and artifacts in the dynamics. More importantly, chemical reactions taking place in the 

crystalline state are generally irreversible or exhibit a limited number of photo-excitation 

cycles

certain
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isomers with different absorption spectra. This property, together with their capacity to undergo 

a large number of cyclization and cycloreversion cycles before significant degradation, make 

them good candidates for optoelectronic applications such as all-optical memories and 

switches21, 22. For this reason, and also because of the potential application of certain derivatives 

in their crystalline state to act as light-driven nano- and microactuators23-25, diarylethenes with 

heterocyclic aryl rings have been the subject of recent extensive study. 

 

The ring closing reaction in photochromic diarylethene also represents a textbook example of 

classic electrocyclic reactions. A large number of time-resolved spectroscopic and theoretical 

studies have been performed on these systems, revealing that the cyclization reaction occurs on 

sub-ps to ps time scales19, 26-39 and proceeds through the crossing of a conical intersection40-42. To 

understand the mechanism of ring closing, we need to know the specific motions that direct the 

system through the barrier cross region or define the conical intersection between the ring-open 

and -closed electronic surfaces.  It is these motions that define the reaction saddle point and 

effective barrier height.  This information is critical to controlling the chemistry of interest.   In 

this regard, all-optical measurements are only indirectly sensitive to the structural changes 

associated with the reaction and cannot provide a complete atomistic description that is needed to 

understand the chemistry at the most basic level.  

 

Here we present UED measurements of the ring closing reaction in the single crystal 

diarylethene derivative 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene (Scheme 

1), performed with our recently developed ultrabright fs electron source43. Complementary ab 
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initio calculations are also presented in order to assist the time-resolved crystallography 

measurements.  

 

Scheme 1 

The general considerations and constraints discussed above for solid state organic chemical 

reactions fully apply to this study. Furthermore, the thermal irreversibility of the isomerization 

reactions in diarylethene represents an additional experimental difficulty. Following every 

cyclization pump-probe event, cycloreversion must be photoinduced with a second laser beam to 

bring the crystal back to its fully open-ring state, further reducing the repetition rate achievable. 

However, this property also confers two very important advantages over thermally reversible 

reactions. First, the thermal stability of the system can be exploited to systematically compare the 

time-resolved diffraction signal with that of the final product and thus to explicitly monitor the 

convergence to the ring-closed structure. Second, we can be confident from the well defined 

photoproduct diffraction when the sample is in the photoreversible regime, independent from the 

time-resolved signal, which is extremely important to prevent strain-induced effects from biasing 

the findings. 

 

This study is the first to directly probe the structural changes involved in a solid state organic 

chemical reaction with sub-ps resolution. It paves the way for the use of UED to determine the 

key atomic motions involved in complex organic systems. The complementary quantum 

mechanical calculations also represent a great advance with respect to determining structural 
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minima on excited state potential energy surfaces in the crystalline phase and in the vicinity of 

conical intersections.  The theory greatly complements the experimental studies and analysis, to 

provide further checks and constraints for extracting the key motions from the diffraction data. 

 

II. Experimental and Computational Methods 

Powdered 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)perfluorocyclopentene (Tokyo Chemical 

Industrial Co.) was dissolved in hexane (5 g/L) and single crystals were grown in the dark by 

slow solvent evaporation. The crystals were microtomed to 100-150 nm thickness and mounted 

on standard TEM copper meshes covered with lacey Formvar. Different orientations were 

obtained by microtoming the single crystals along different planes. 

 

The UED measurements were conducted in transmission mode with a recently developed 

ultrabright source consisting of a 95 kV DC photoelectron gun in combination with a radio 

frequency rebunching cavity (details of the system are presented elsewhere43). The pump and 

electron probe pulses were both derived from the frequency tripled (270 nm) output of a 

Ti:sapphire oscillator (Coherent Micra) and associated regenerative amplifier system (pulses at 

810 nm, 50 fs, and 500 μJ). The electron probe pulses were generated by photoemission from a 

gold photocathode, followed by subsequent acceleration at 95 keV and compression by a 3 GHz 

RF cavity. Pulses of 70 fC were used. The UED system has an overall temporal instrument 

response function of 430 fs, with sufficient stability and signal to noise to extract 100 fs 

structural dynamics43. To induce ring closing, the pump fluence was set to 0.35 mJ/cm2 at the 

sample position and the pulses were stretched to approximately 300 fs in order to minimize the 

peak power to avoid multiphoton ionization artifacts. Only a small fraction of the molecules 
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were converted to the closed-ring form at each cycle. Following each UV pump pulse, a cw 

HeNe laser (633 nm, 2 mW)  for 10 seconds to convert all the molecules 

back to their initial open-ring state. It should be emphasized that the overall repetition rate was 

thus limited to approximately 0.1 Hz, which is 4 orders of magnitude slower than the majority of 

UED experiments which are performed at 1 kHz. This low repetition rate also ensured the 

absence of any accumulated heating effect on the dynamics of interest. The electron probe, UV 

pump, and HeNe beam spot sizes at the sample position were respectively 400 μm, 600 μm, and 

700 μm. To perform the time-resolved measurements, the pump pulses impinge on a variable 

delay stage in order to systematically vary the path length of the pump relative to the probe to 

measure the temporal dependence of the photoinduced changes in diffraction intensity. 

 

 Throughout the data collection, independent determination of t0 – which is subject to drift 

with the RF compression technique and can compromise the time resolution– was performed 

once every hour in between scans using the previously described method of photoelectron 

bunches deflection from laser induced surface plasma on a copper mesh44.  For the t0 correction, 

a 810 nm pulse, collinear and matched in time with the 270 nm pump employed for the UED 

measurements, was used to generate the plasma. 

 

For each pump-probe event, three distinct diffraction patterns were acquired prior to photo-

inducing the cycloreversion: before (pump-off), during (pump-on), and after (pump-off, before 

cycloreversion). The difference in diffraction intensity between the during and before images 

corresponds to the time-resolved signal, while the difference intensity between the after and the 

irradiated the sample
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before images corresponds to the t∞ signal, effectively the difference between equilibrium closed 

ring and open ring patterns. 

  

The indexing and orientation determination of the fully open-ring experimental electron 

diffraction patterns were performed with the help of a simulation program developed in-house, 

which has been reported previously15.  The structure obtained previously by X-ray diffraction23 is 

considered. The observed diffraction patterns were well reproduced by the simulations, the 

resulting R factors varying between 0.23 and 0.34 (see Supporting Information). To simulate the 

diffraction patterns of the closed-ring form (and of the model structures), since only a fraction of 

the molecules are converted during each cycle, the structure factors of both the open- and the 

closed-ring (or model) structures were combined according to a simple method presented 

previously for time-resolved crystallography analysis45

distribution of excited (or converted) molecules in the initially fully open-ring crystal. Such 

  

 The open-ring electronically-excited intermediate was optimized on a potential energy surface 

using the QM/QM paradigm47, whereby the reactive molecule is treated using the CASSCF 

method with a localised basis set, while the surrounding crystal lattice is described on the DFT 

level with a plane-wave basis set.  The bulk lattice surrounding the photoexcited molecule was 

described using the PBE exchange-correlation functional48  as implemented in the software 

photo-induced disorder results generally in a reduction of the average diffraction intensity, but 

the specific behavior of the individual peaks – i.e. to increase or decrease in intensity by a given 

magnitude – depends on the actual molecular structural changes of the excited (or converted) 

molecules46. 

. The method considers a random 
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package CASTEP version 5.049. A plane-wave cutoff of 400 eV was applied. The electronic 

Brillouin zone was sampled at the (0 1/4 0)-point only.  The default ultrasoft pseudopotentials 

were used50, and energies and forces were corrected for dispersion interactions using the 

semiempirical scheme of Grimme51. The same level of DFT theory was applied in the 

optimizations of the ground-state open- and closed-ring structures, except that the plane-wave 

cutoff was increased to 500 eV. The photoexcited state of the reactive diarylethene molecule was 

treated at the state-specific CASSCF level, as implemented in the software package 

GAUSSIAN0952. According to the previous CASSCF study on the photocyclization reactions of 

diarylethenes42, an active space consisting of 10 π and π*-type orbitals provides a realistic 

description of the potential energy surface of the open-ring isomer. Therefore an active space 

consisting of 10 canonical π and π*-type orbitals, which were mostly localized on the thiophene 

rings, was used in all CASSCF calculations reported in the present work. Note due to 

computational costs the pendant benzene rings have been omitted from the CASSCF 

calculations, and the resultant dangling valency sites on the thiophene rings capped with 

hydrogen atoms. As a compromise between computational cost and tractability, the 3-21G basis 

 

 

III. Results and Discussion 

3.1 Static electron diffraction measurements and comparison with ground state 

calculations. The reversibility of the structural changes associated with cyclization and 

cycloreversion of a fraction of the molecules in crystalline diarylethene was investigated with 

static electron diffraction, subsequent to each photocycle step. Concurrently, the sensitivity of 

was applied in the CASSCF calculation, corresponding to a quality similar to that used in the 

aforementioned theoretical study on free diarylethene molecules42. 
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the diffraction patterns produced by various crystal orientations to the atomic motions involved 

 

was also assessed. Figure 1a-c show the electron diffraction patterns of the crystal in its initially 

open-ring state for three distinct orientations. Figure 1d-f show the corresponding differential 

images – the difference between the diffraction patterns of the open- and closed- ring states – 

following the ring closing of a fraction of the molecules by single fs UV pulses. It can be 

observed that several Bragg peaks exhibit a significant change in diffraction intensity, 

demonstrating our capability to probe the relevant structural changes involved in the ring closing 

reaction. It must be emphasized that the signals observed in Figure 1d-f correspond effectively to 

the t∞ point in a time-resolved experiment.  
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Figure 1. Static electron diffraction measurements and comparison with ground state 

calculations. (a-c) Diffraction patterns of the fully open-ring form for the crystal orientations 

[0.45 0.19 0.87], [-0.77 0.17 -0.62], and [0.87 -0.02 0.49]. Each image corresponds to the 

average of 5-10 different samples. The assigned Miller indices are displayed for selected peaks. 

(d-f) Differential intensity changes associated with the patterns presented in (a-c) following 

photoinduced ring closing induced by single UV excitation pulses. (g) Normalized intensity of 

the reflection (5 1 -6) for the first 12 cyclization and cycloreversion cycles, induced respectively 

 

Figure  reports the normalized diffraction intensity of the Bragg peak (5 1 -6) as a sample is 

cycled between the open- and closed-ring states, following subsequent irradiation by single UV 

pulses and continuous wave (cw) visible light. It can be observed that the change in diffraction 

intensity is both reversible and repeatable. Similar results were obtained for all Bragg peaks 

exhibiting an intensity change. This confirms the reversibility of the structural changes with the 

excitation conditions used, which allows pump-probe measurements to be performed without 

constant exchange or translation of sample. The inset presents the normalized absolute difference 

in diffraction intensity of the same Bragg peak for 400 cycles. It can be observed that 

approximately 300 repeatable cycles are achieved, considering a 70% criterion. This result is 

typical; depending on the sample, the number of photocycles available for the time-resolved 

experiment varied between 100 and 500 cycles. This limited repeatability represents a major 

with single UV pulses and cw visible light. The inset shows the normalized absolute intensity 

change for the first 400 cycles. (h) Starting open-ring and closed-ring photoproduct geometries 

optimized in the open-ring crystal lattice at the DFT level of theory. (i-k) Simulated differential 

intensity changes based on the calculated structures.  

1g
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challenge for performing time-resolved crystallography measurements. However, it remains 

feasible to achieve the signal-to-noise ratio (SNR) required to accurately follow the structural 

changes of interest due to the high reproducibility of the samples, the consistency of the UED 

system, and its single-shot diffraction pattern acquisition capability even in the sub-ps resolution 

regime. 

 

In order to further confirm that the observed changes in diffraction intensity result directly 

from the structural changes associated with the ring closing reaction, the theoretical difference 

intensities were determined using the calculated open- and closed-ring ground state structures in 

the open-ring crystal lattice. The latter geometries, optimized at the DFT level of theory, are 

 

3.2 Time-resolved electron diffraction measurements. UED measurements were performed 

to determine the temporal evolution of the diffraction intensity of the various Bragg peaks in 

order to follow the formation of the closed-ring photoproduct. Three main trends were observed 

presented in Figure 1h. Figure 1i-k show the resulting simulated differential images for the three 

crystal orientations presented above, considering a conversion of 2.9 % of the molecules from 

the open to the closed-ring calculated structures. It can be observed that the general agreement is 

excellent with the corresponding experimental results presented in Figure 1d-f. Considering the 

reliable high intensity peaks (22), the Pearson correlation coefficient for the relative intensity 

changes is 0.87. The strong correspondence between the experimental and simulated changes in 

diffraction intensity fully confirms that the structural changes associated with the ring closing 

reaction are appropriately probed. (See Supporting Information for details on the theoretical 

differential images, the correlation calculation, and the structures optimization.) 
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and are explained below. Representative results are presented in Figure 2. The relative change in 

diffraction intensity is given as a function of the time delay between the fs electron probe pulses 

and the fs UV pump pulses. As mentioned previously, the t∞ point was systematically measured 

after every pump-probe event and is equivalent to the difference intensities displayed in Figure 

 

Figure 2. Time-resolved relative changes in diffraction intensity following photoexcitation for 

selected reflections. (a-d) Dynamics of Bragg peaks (5 1 -6), (5 -1 -2), (2 0 -2), and (2 0 -4) 

respectively, averaged from a total of 18 samples. The error on the t∞ point corresponds to the 

t∞) can be estimated from the noise before t0. D  rather 

 

Exponential fits with constant offset are displayed in (a) and (b). Although bi-exponential 

1d-f. Monoexponential fits with constant offset are shown in Figure 2a-b, with time constants of τ = 3 

and τ = 5 ps respectively. 

standard deviation of the measured values within the crystals considered. The error on the time-

resolved data (all time points except ashed

than solid lines are used to link the last time points to highlight the change of time scale.
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dynamics are expected for this system, mono-exponential fits were performed because of the 

limited SNR.  

 

The signals presented in Figure -b are typical and a similar behaviour was observed for 

several other Bragg peaks. A change in diffraction intensity is developed with a time constant of 

a few ps and the signal amplitude for the time points beyond 20 ps is approximately equal to the 

t∞ signal. Since it was unambiguously established in the previous section that the changes in 

diffraction intensity observed at t∞ correspond to the cyclization of a fraction of the molecules, 

the UED signals shown in Figure -b are directly attributed to the structural changes involved in 

the ring closing reaction. Furthermore, the observed time scale agrees with the results of the 

transient absorption measurements reported previously on the same compound also in the 

crystalline state19. Time constants of 200 fs and 5.3 ps were found for the formation of the open-

ring excited state intermediate and of the closed-ring molecule, respectively, both of which 

involve structural changes. Bragg planes for which the dominant contribution to the dynamics is 

the ring closing step should exhibit a time constant on the order of 5 ps or slightly less, which 

  

The signal presented in Figure  was also observed for a number of Bragg peaks. It consists 

of a slow signal of generally large amplitude, exhibiting a rise time on the order of 80 ps, and for 

which the late time points are not equal to the t∞ signal. Such behaviour is not reflective of 

permanent structural changes. Instead, it is indicative of strain waves, which result from the 

stress induced in the crystal film following the ring closing of a fraction of the molecules within 

2a

2a

corresponds to what is observed in Figure 2a-b. The successful probing of the photoproduct 

formation and the direct confirmation of its time-scale constitute a key result of this study. 

2c
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the open-ring crystal lattice. Similar strain signals were reported in other UED studies15, 53. 

Nevertheless, only a minority of Bragg peaks exhibited strain signals, and since they are easily 

identifiable as signal modulation and are well separated in time, they did not influence the 

monitoring of the ring closing reaction. Keeping 18 of the 22 peaks considered above (i.e. those 

free of strain signal to further reduce any influence on the analysis), the Pearson correlation 

coefficient between the average relative diffraction intensity changes measured between 10 and 

50 ps and the ones simulated from the calculated closed-ring state is 0.92. 

 

Finally, the signal presented in Figure  exhibits a clear sub-ps decrease in diffraction 

intensity (followed by a strain signal), confirming the existence of an intermediate structure 

formed on this time scale. This constitutes another key result of the study. More specifically, the 

ultrafast signal is attributed to the initial evolution of the open-ring molecules on the excited state 

potential energy surface prior to ring closing. The behaviour of the UED signals implies that the 

formation of the intermediate state brings the initially open-ring molecules towards the closed-

ring structure, while being clearly distinct from the latter. This follows from the fact that the 

different Bragg peaks exhibit relatively smooth intensity changes towards the ring-closed level 

(no extravagant behaviour was observed near t=0), but they do so at different rates. 

 

At this point, it is important to emphasize the significant advance of this work with respect to 

the UED measurements that we reported previously to complement a spectroscopic study on the 

same system19. In the latter, we demonstrated the feasibility of this experiment and resolved the 

change in diffraction intensity of one Bragg peak with 10 ps time steps. In the current study, we 

resolved the UED signal associated to a large number of diffraction peaks, from several crystal 

2d
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orientations, and we improved by more than one order of magnitude the time resolution due to 

the advancement of our ultrabright electron source.  The number of diffraction orders and time 

resolution is now sufficient in principle to unambiguously distinguish between different possible 

motions leading the system to the conical intersection on the excited state surface, as limited in 

practice only by the SNR. Furthermore, we present here a comprehensive analysis which 

includes notably the unambiguous assignment of the t∞ diffraction changes to the ring closing 

reaction, providing a clear interpretation for the associated UED signals observed.  The quality 

and time resolution of the present diffraction data, together with theoretical calculations, enables 

reconstruction of the key motions directing the ring closing reaction.  

 

3.3 Model analysis and intermediate structure calculation. To gain more insights on the 

intermediate structure, and also to further confirm the convergence of the diffraction patterns 

towards the closed-ring molecule, a simple model was constructed in order to generate a pool of 

molecular structures to compare with the time resolved data. It was found by inspection that a 

small number of basic rotations – four pairs consisting of seven pure rotations and one torsion – 

could convert the open-ring structure presented in Figure  into the closed-ring one (details of 

the model analysis are given in Supporting Information). The different motions were allowed to 

vary independently. The average changes in diffraction intensity for time delays between 10 and 

50 ps were compared to the ones generated by the model structures. The average of the top 1% 

best matching structures is presented in Figure . It is similar qualitatively to the calculated 

product geometry shown in Figure .  

 

-

1h

3a

1h
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The amount of reliable experimental data available to investigate the intermediate structure is 

limited by the SNR for the various diffraction orders. Nevertheless, the changes in diffraction 

intensity of the strongest reflections immediately following photoexcitation were compared to 

those generated by the model structures in order to identify a possible trend with respect to the 

key motions involved. It was found that the best matching structures are those for which the 

thiophene rings are significantly rotated while the perfluorocyclopentene ring is only slightly 

rotated, as shown in Figure . Higher SNR would be required to precisely extract the 

intermediate state structure. Nevertheless, we believe this relatively simple method of analysis 

could prove to be of general importance in extracting structural information from FED 

measurements of complex organic reactions.  

 

 

Figure 3. Model analysis of the UED data. (a) Experimental photoproduct: best matching model 

structure for the time delays between 10 and 50 ps. The 18 most reliable reflections were 

included (Bragg peaks with large diffraction intensity – above 35% of maximum intensity – and 

which exhibit no strain waves). The top 1% matching structures were averaged together to obtain 

a representative result of the overall convergence. (b) Experimental intermediate: distribution of 

the percentage completion (with respect to the closed-ring geometry) of the thiophene and 

perfluorocyclopentene rotations among the top 1% matching structures for the time delays 

3b
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between 0.5 and 3 ps. Because of the significantly lower SNR, only the 9 strongest reflections –

above 65% of maximum intensity – from the two orientations which were measured with short 

time steps were included. 

 

In order to provide a clearer picture of the excited-state open-ring intermediate structure, an ab 

initio theoretical model was constructed using the QM/QM paradigm, which we have described 

in full elsewhere47. The output from this calculation corresponds to the fully-optimised 

intermediate structure labelled HT* (in accordance with the labelling scheme of Boggio-Pasqua 

et al. 42 presented in Figure 4) embedded in a crystal lattice of fully-optimised electronic ground 

state molecules. The structure of this ring-open intermediate is very similar to that proposed 

theoretically for a free molecule by Boggio-Pasqua et al., with a shortened distance of 2.19 Å 

between the two reactive carbon atoms (c.f. 3.71 Å in the fully ring-open state HT, and 1.56 Å in 

the fully ring-closed state CHD). The optimized structure is presented in Figure 5, overlaid on 

the open-ring molecule. The main structural change is a significant rotation of the thiophene 

rings which acts to flatten the molecule considerably. In contrast, the rotations of the benzene 

and perfluorocyclopentene rings are very small (see Supporting Information for details). Thus, 

most of the structural change appears to involve the thiophene rings, with minimal motion 

observed for the perfluorocyclopentene moieties. This finding is in qualitative agreement with 

the noted behaviour based on the above analysis of the experimental results. That said, the fact 

that the pendant benzene rings were omitted from the CASSCF calculations is a potential source 

of weakness and will require further theoretical investigation. Moreover, whether the 

intermediate state captured in the UED experiment is directly the HT* structure, or corresponds 
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to a mixture composed of the HT* intermediate and some other state, perhaps involving the 

conical intersections CI4 or CI5 (see Figure 4), will require further theoretical investigation. 

 

 

Figure 4. Ring closing reaction labelling scheme. HT, HT*, CHD, CIi, and hυ are respectively 

the open-ring ground state, the open-ring excited state intermediate, the closed-ring ground state, 

the conical intersections, and the photon absorption. Adapted with permission from 

Copyright 2003 American Chemical Society. 

 

 

Figure 5. Theoretical model of the open-ring excited state intermediate structure. Front and top 

view of the optimized geometry of the electronically excited intermediate (red) displayed on top 

of the optimized ground state open-ring geometry (black).  

reference 42. 
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Overall, the experimental results and quantum mechanical calculations strongly support the 

reaction mechanism suggested previously19, 42. Following photoexcitation and subsequent 

internal conversion from higher lying states to the S1 surface, the molecule relaxes from the 

Franck-Condon geometry to an open-ring minimum on S1 along the reaction coordinate. The 

UED measurements confirm that this relaxation involves significant atomic motions, which 

occur on the sub-ps time scale. The details of a stable intermediate structure are provided by the 

constructed theoretical model. This relaxation results in the release of a large amount of kinetic 

energy, which is redistributed among the various vibrational modes of the molecule. Through 

motions orthogonal to the reaction coordinate, the molecule eventually reaches a conical 

intersection located in proximity of the S1 minimum, from which it decays radiationlessly to S0 

and forms the closed-ring photoproduct. The convergence towards the structure of the closed-

ring molecule was unambiguously witnessed with UED and it was confirmed to occur with a 

time constant of approximately 5 ps. 

 

IV. Conclusion 

In summary, UED measurements were performed with sub-ps time resolution to investigate 

the ring closing reaction of a single crystal diarylethene derivative, fully exploiting its cycling 

capability and thermal irreversibility. The formation of the closed-ring photoproduct was directly 

observed, in addition to resolving sub-ps structural changes associated with the formation of the 

reaction intermediate. 
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Another significant result is the simple observation that a small number of basic modes could 

fully convert the open-ring structure into the closed-ring one. Here we made use of this finding 

for generating a pool of molecular structures in order to analyze the UED measurements. 

However it is more than a mere convenient technicality. Such enormous reduction in 

dimensionality in barrier crossing regions should be a general observation in complex organic 

systems. This is what makes chemistry a transferable concept. The exact nature of how low 

frequency spatially extended modes couple to higher frequency modes to give this reduction is a 

central issue in chemistry in terms of understanding far from equilibrium fluctuations necessarily 

involved in chemical processes. The specific motions involved cannot be inferred from static 

structures alone. The present work paves the way for the use of UED to determine the key atomic 

motions involved in complex organic systems as part of revealing the general mechanism by 

which chemistry undergoes dimensional reduction at critical points.  The reactions and the scale 

of the chemical systems that can now be addressed is on par with chemical practice and should 

be of great utility in helping optimizing desired reaction pathways.  As the source technology 

advances, this approach can ultimately be applied to biological systems as well, where the issues 

of dimensional reduction and how biological systems coarse grain sample their potential energy 

surface to transduce chemical potential into functions is a central issue.   
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