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Abstract
Wepropose an all-optical, three-dimensional electron pulse compression scheme inwhichHermite–
Gaussian opticalmodes are used to fashion a three-dimensional optical trap in the electron pulse’s rest
frame.We show that the correct choices of optical incidence angles are necessary for optimal com-
pression.We obtain analytical expressions for the net impulse imparted byHermite–Gaussian free-
spacemodes of arbitrary order. Althoughwe focus on electrons, our theory applies to any charged
particle and any particle with non-zero polarizability in the Rayleigh regime.We verify our theory
numerically using exact solutions toMaxwell’s equations forfirst-orderHermite–Gaussian beams,

demonstrating single-electron pulse compression factors of >102 in both longitudinal and transverse
dimensions with experimentally realizable optical pulses. The proposed scheme is useful in ultrafast
electron imaging for both single- andmulti-electron pulse compression, and as ameans of cir-
cumventing temporal distortions inmagnetic lenses when focusing ultrashort electron pulses. Other
applications include the creation offlat electron beams and ultrashort electron bunches for coherent
terahertz emission.

1. Introduction

The ability of ultrafast x-ray and electron pulses to probe structural dynamics with atomic spatiotemporal
resolution has fueled awealth of exciting research on the frontiers of physics, chemistry, biology andmaterials
science [1–4]. Although electrons lack the penetration depth of x-rays, the large scattering cross section of
electrons (105–106 times that of x-rays of the same energy [5, 6]) and relative availability of high intensity table-
top electron sources favor the use of electrons especially in the study of surfaces, gas phase systems and
nanostructures.

An electron pulse tends to expand and acquire a velocity chirp as it travels, firstly due to space–charge (i.e.
inter-electron repulsion), and secondly due to dispersion resulting from an initial velocity spread. The
propagation of electron pulses has been the subject of extensive study [7–9]. To ensure that the electron pulse
arrives at the sample or detector with the desired properties (e.g., spot size, coherence length, pulse duration),
many ultrafast electron imaging setups adoptmeans to compress the electron pulse transversely and
longitudinally. Longitudinal compressionmethods include the use of electrostatic elements [10],microwave
cavities [11–15], and optical transients [16, 17]. These techniques can potentially compress single-electron
pulses [18, 19] to attosecond-scale durations [16, 20]. Tranverse compression, or focusing, of an electron pulse
is typically achievedwith standard charged particle optics likemagnetic solenoid lenses. Femtosecond electron
pulses, however, suffer significantly from temporal distortions inmagnetic lenses and requiremore complicated
combinations of charged particle optics for isochronic imaging [21].

In this paper, we propose a scheme for the three-dimensional compression of electron pulses using only
optical transients, with no staticfields involved. The scheme comprises a succession ofHermite–Gaussian
opticalmodes that effectively fashions a three-dimensional optical trap in the electron pulse’s rest frame. Such a
scheme is useful in ultrafast electron imaging for both single- andmulti-electron pulse compression, and as a
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means of circumventing temporal distortions inmagnetic lenses [21]when focusing ultrashort electron pulses.
Methods of generatingHermite–Gaussianmodes include the use of waveplates [22] and excitation in diode
lasers [23].

In section 2, we present an overview of the three-dimensional electron pulse compression scheme, and
describe how a succession of compression stagesmay be implementedwith a single optical pulse. In section 3, we
showmathematically that the right choice of optical incidence angle is necessary for optimal longitudinal
compression, and obtain analytical expressions for the net velocity change induced in a charged particle by the
passage of an optical pulse. In section 4, we illustrate the conclusions of section 3with exact numerical
simulations of the laser–electron interaction.We demonstrate single-electron pulse compression factors of
>102 in both longitudinal and transverse dimensions using experimentally-realizable optical pulses, and study
the energy scaling laws of the compression scheme.

2.Overview

A charged particle in an electromagnetic wave experiences a time-averaged force called the ponderomotive force
[24, 25] that pushes the particle towards regions of lower optical intensity in the particle’s rest frame. Dielectric
particles are also subject to this phenomenon, and applications of electromagnetic ponderomotive forces have
included atomic cooling, opticalmanipulation of living organisms, plasma confinement, and electron
acceleration [26–28]. The optical ponderomotive force has also been used in the characterization of ultrashort
electron pulses [29–32].

Here, we use the ponderomotive force to compress an electron pulse by subjecting the electron pulse to the
intensityminimums of appropriately-orientedHermite–Gaussianmodes, as illustrated infigure 1(a).
Compression in eachCartesian dimension can be controlledwithout affecting electron pulse properties in
orthogonal dimensions, at the lowest order. Although either pulse I or II suffices for longitudinal compression,
using two identical pulses in the configuration shown ensures that any higher-ordermodulations affecting
transverse electron pulse properties do so equally in x and y. Infigure 1(a), pulses I and II control compression in
z, whereas pulses III and IV control compression in y and x respectively. The stages (and optical pulses)may be
arbitrarily ordered and cascaded, as long as inter-particle interactions and dispersion affect the electron pulse
negligibly between interactions. Since the ponderomotive force is a nonlinear effect (i.e. not directly
proportional to electric field), the optical pulses should be sufficiently far apart so that interference between the
fields of different pulses does not occur.

The use of an optical pulse’s transverse intensity profile for electron pulse compression has been proposed in
[17].However, the scheme in [17] uses an optical incidence angle normal to the electron path in the lab frame, a
sub-optimal configuration for electrons of non-zero speed. In addition, the scheme in [17] uses a Laguerre–

Figure 1. (a) Schematic diagramof three-dimensional electron pulse compression technique using pulsed first-orderHermite–
Gaussian opticalmodes, which are portrayed as pairs of shiny red lozenges. Green lines lie in the x–z plane, black lines in the y–z plane.
Dotted lines are the beamaxes downwhich the optical pulses propagate. The electron pulse travels at speed β≡v c in the +z-direction,

c being the speed of light in vacuum. γ β≡ −
−( )1 2 1 2

is the Lorentz factor. (b) Schematic diagram illustrating how a single optical

pulsemay be used to implement a succession of compression stages. Lines ending infilled arrowheads sketch the trajectories of optical
(red) and electron (gray) pulses, with the arrowheads terminating at the interaction points.
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Gaussian ‘donut’mode, which—even for a stationary electron pulse—couples compression in the longitudinal
dimension to that in exactly one transverse dimension.

Intuitively, the oblique optical incidence angle of the longitudinal compression stage ismotivated by the
desire for normal optical incidence in the electron pulse’s rest frame. This implies a lab frame incidence angle of

θ
θ

γ θ γβ
=

″
″ +

=
( )
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c v
arctan

sin

cos
arctan

1
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where the electron pulse propagates in the +z-directionwith speed β≡v c (c the speed of light in vacuum),

corresponding to Lorentz factor γ β≡ −
−( )1 2 1 2

. Thefirst equality in (1) expresses the relation between the

rest frame incidence angleθ ″l andθl . The second equality wasmade by settingθ ″ = °90l .We have taken the
optical group velocity as c, a valid assumption [33] for the paraxial,many-cycle optical pulses we are interested
in. The physics behind (1) is illustrated infigure 2, which shows how oblique optical incidence in the lab frame
corresponds to normal optical incidence in the electron pulse’s rest frame. In the next section, we show
mathematically that (1) is optimal in the sense thatwhen it is satisfied, the induced velocity change in the
longitudinal direction is not a function of transverse coordinates and not accompanied by transverse phase plane
modulations, at the lowest order. Figure 3(a) illustrates the physicalmechanism of the longitudinal compression
scheme: the laser–electron interaction induces a velocitymodulation in the electron pulse, which then
compresses as it continues to propagate. The transverse compression schemeworks according to the same
principles, except that the desired velocitymodulation is now along a transverse dimension.

Since the electron pulse is stationary along its transverse dimensions, normal incidence in the rest frame is
achievedwith any value ofθt for transverse compression. Indeed, we see in section 4 that the transverse
compression of 30 keV electrons is a relatively weak function ofθt. However, the choice ofθt can significantly
affect the longitudinal compression ratio in a three-dimensional compression scheme via higher-order terms of
the transverse compression stage, with the best results achievedwhenθ = °0t .

Equation (1) is also the condition for group velocitymatching between electron and optical pulses along the
axis of electron pulse propagation (i.e. θ β= ≡c c vcos l ). This observationmotivates the cascaded compression
scheme offigure 1(b), inwhich an optical pulse (either pulse I, II, III or IV) is reflected and re-focused by a
succession of optical stages, so as to be repeatedly incident upon the electron pulse, allowing the optical pulse to
be utilized to itsmaximum capacity. If (1) is satisfied, the interval between laser–electron coincidences is

γ=T
D

c
, (2)coin

Figure 2. Intensity profile of pulse II (see figure 1(a)) at three instances in time in the (a) lab frame and (b) rest frame of a 30 keV
electron pulse. In the lab frame, the temporal pulse and carrier wavefront are obliquely incident atθ = °70.9l , in accordancewith (1),
giving rise to normal incidence in the rest frame. Double-primes denote rest frame variables.
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assuming that the electron pulse is injected along the axis of symmetry of the setup, and that the optical
components introduce no delays. To avoid optical interference between successive interactions,D should
generally be chosen so that τ≫Tcoin is satisfied, τ being the optical pulse duration.With suitable combinations
of optics, one can also implement the design infigure 1(b) for any optical incidence angle, or such that a single
optical pulse is used to realize several or all of pulses I, II, III and IV, since the four types of pulses essentially differ
only in orientation.

3. Theory

In this section, we obtain analytical expressions approximating the ponderomotive potential and net impulse
transfer associatedwith transverse and longitudinal compression by pulsedHermite–GaussianTEMmn modes
of arbitrary order.We showmathematically that when (1) is satisfied, the induced velocity change for
longitudinal compression is not a function of transverse coordinates and not accompanied by transverse phase
planemodulations, at the lowest order. Althoughwe focus on charged particles, our treatmentmay be extended
to any particle with non-zero polarizability in theRayleigh regime (particle sizemuch smaller than
electromagnetic wavelength) by the simple replacement of a constant factor.

A charged particle in an electromagnetic wave experiences a force [24, 25]

⃗ =− + …F U , (3)p

where the ponderomotive potentialUp is

ω
≡ ⃗U

q

m
E

4
, (4)ap

2

0
2

2

and q andm0 are respectively the particle’s charge and restmass. The particle sees the electric field
⃗ = ⃗ +ω( )E E e c.c. 2a

ti , where ⃗Ea varies slowly in time compared to the carrier factor and ≡ −i 1 . The ellipsis

Figure 3. (a) Physicalmechanismof the longitudinal compression scheme: (i) the initial electron pulse has afinite spread in
momentum and position; (ii) the laser–electron interaction accelerates the back electrons and decelerates the front electrons; (iii) as
the pulse propagates, the back electrons catch upwith the front electrons, leading to electron pulse compression. Δ ≡ −z z z
denotes the particles’ displacement from the bunch centroid along the z-dimension (and so on for the other variables). Phase plane
distributions of the 30 keV electron pulse immediately after the longitudinal compression stage are shown for optical incidence angles
(b)θ = °90l , (c)θ γβ= = °arctan(1 ) 70.9l , and (d)θ = °35.4l . Phase plane distributions of the electron pulse immediately after the
transverse compression stage are shown for optical incidence angles (e)θ = °90t , (f)θ = °70.9t and (g)θ = °35.4t . Focal times tfl,ft

and compression ratiosC l,t are indicated for each case. 1000 particles were used in each simulation.
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in (3) hides terms proportional to ω±e ti or ω±e ti2 . Equation (3) was derived from theNewton–Lorentz equation
in the rest frame of the initial particle. As such, the notion that a particle experiences a force proportional to the
gradient of electromagnetic intensity is valid in the rest frame of the particle, and not necessarily in a framewhere
the particlemoves with any substantial velocity. The netmomentum imparted to a particle by the passage of a
many-cycle pulse is then

∫ ∫△ ⃗ = ⃗ = −p F t U td d . (5)p

Physically, the electricfield causes the charged particle to oscillate about its initial position, generating an
effective dipole that is subject to the same radiation pressure forces [34] experienced by dielectric particles in
optical tweezers [26]. In fact, replacing ωq m0

2 byα 2 turns (4) into the ponderomotive potential of a particle in

the Rayleigh regime, where the particle’s polarization α⃗ = ⃗P E . The results in this paper thus also apply to
polarizable particles.

A paraxial,many-cycle electromagnetic pulse can bemodeled using the vector potential ansatz

ξ
ξ

⃗ = ⃗ ψA A gRe ˜ e , (6)i

0

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
where each component of ⃗Ã is a solution of the paraxial wave equation [35], g ( · ) a real even function describing
the pulse shape such that ξ →ξ →∞glim ( ) 0,ξ0 a constant associatedwith pulse duration,ξ ω≡ − −t k z z( )i

andψ ξ ψ≡ + 0, with zi the pulse’s initial position (at t=0) andψ0 a phase constant. x, y and z areCartesian

coordinates. ⃗Ã is a slowly-varying function of only spatial coordinates such that ϵ∂ ⃗ ∂ ⃗ =A A˜ , ˜ O( )x y d and

ϵ∂ ⃗ = ( )Ã Oz d
2 , where the beamdivergence angleϵ ≪ 1d . To ensure that the particle bunch interacts with the

electromagnetic pulse onlywhen the bunch is close to the electromagnetic beam axis (and hence the center of the
ponderomotive potential well), we use pulses such thatϵ ξ≪ ≪− 1d 0

1 . The electromagnetic fields are obtained
via the identities [36]



 ∫
⃗ = × ⃗

⃗ = ⃗ − ∂ ⃗
∂

B A

E c A t
A

t
· d , (7)2

inwhichwe have applied the Lorenz gauge.
Consider a non-zero θ (θ θ= t orθl) and a particle propagating in the +zdirectionwith speed β∣ ⃗ ∣ ≡v c.We

henceforth denote all variables in the native frame of the electromagnetic pulsewith prime superscripts, so the
pulse propagates in the+ ′z direction, and all variables in the particle’s rest framewith double-prime
superscripts. Non-primed variables x y z t, , , are lab frame variables, defined in accordance withfigure 1(a).
Note that in the rest frame,ω in (4) should be replaced by theDoppler-shifted frequencyω ωγ β θ″ ≡ −(1 cos ).
Applying the appropriate rotation and Lorentz transformation operators to (6) and (7), we obtain the
ponderomotive potential in the rest frame as

ϵ ξ β″ = ′ + ′ + + +−( ) ( )U
q

m
A A g

4
˜ ˜ 1 O( ) O O( ) , (8)x yp

2

0

2 2 2
d 0

1⎡⎣ ⎤⎦

a result that applies for general ⃗Ã satisfying the paraxial wave equation, assuming that ′Ãz is on the order of the
transverse components or less.

For the linearly-polarizedHermite–GaussianTEMmn mode,

ρ′⃗ ≡ ′ ′ − ′ ′ ′ ′ ′ ′
′

′

+

( ) ( )( )A A f f H f x H f y
f

f
˜ x̂ exp ˜ ˜

*
, (9)m n0

2
m n

2
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

whereA0 is a normalization constant, ′ ≡ + ′( )f z zi i 0 , ′ ≡ ′x x w˜ 2 0, ′ ≡ ′y y w˜ 2 0, π λ≡z w0 0
2 is the

Rayleigh range,w0 is the beamwaist radius, ρ′ ≡ ′ + ′x y w2 2
0, andH ( · )m is theHermite polynomial of

orderm ( =xH ( ) 10 , =H x x( ) 21 etc), with ∈ m n, 0 (the set of natural numbers including 0). The beam
divergence angle isϵ ≡ kw2 ( )d 0 . From (6) and (7), the peak powerP transported in the propagation direction is

∬ ω ϵ π≡ ′ ′ ′ ≈ + −P S x y A c w n md d 2 ! !, (10)n m
z0

2
0
2

0 0
2 1

where ′Sz0 denotes the z-directed Poynting vector ′ ≡ ′⃗ × ⃗′ ′S E H z· ˆz evaluated at the pulse peak, focal plane and
carrier amplitude. ϵ0 is the permittivity of free space. The energyU of a single pulse is related to its peak power as
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Longitudinal compression is achievedwith theTEMmn modewhenm is odd and n is even. In that case
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andwe have applied Taylor expansions about the origin in (8) to obtain (12). The net impulse in the rest frame is
then

∫
γ β θ Δ θΔ

γ β θ
θ β θ

γ
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where the particle’s rest frame displacement from the bunch centroid is Δ Δ Δ″ ″ ″( )x y z, , , whichwe assume does

not change significantly during the interaction. To eliminate the x-directedmodulation and the Δ ″x -dependence
of the z-directedmodulation in the lowest-order term,wemust choose θ such that θ β=cos , a condition
equivalent to (1). The lab-frame velocity change is then

Δ ξ ϵ β△ ⃗ = − + + + + +−( ) ( )v zK z n mˆ 1 O O ( 1) O( ) , (15)l l 0
1

d
2⎡⎣ ⎤⎦

where the particle’s lab frame displacement from the bunch centroid is Δ Δ Δx y z( , , ). The longitudinal impulse

in the lab frame follows from the relation γ△ ⃗ = △ ⃗ + △( )p m v O vl 0
3

l l
2 . The linear dependence in the lowest-

order term of (15) corresponds to a parabolic potential profile. In the absence of space–charge andmomentum
spread, a particle pulsewould be compressed by a perfectly parabolic potential to a zero extent.

Transverse compression is achievedwith theTEMmn modewhenm is even and n is odd. In this case,
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The net transverse impulse imparted by the passage of a single pulse in the rest frame is

γ β θ
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corresponding to a net lab-frame velocity change of
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As θ approaches °0 , the velocity change becomes larger, a result of improved group velocitymatching along the
optical beam axis. The transverse impulse in the lab frame follows from the relation
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γ△ ⃗ = △ ⃗ + △( )p m v O vt 0 t t
2 . Several noteworthy features of the pulse compression scheme are evident from

(13), (15), (17) and (19):

1. At the lowest order, net velocity change is independent of pulse duration parameterξ0 and pulse shape g.

2. A trade-off between the size of the parabolic potential region and the strength of the compression exists in
twoways: through the laser waist radiusw0, and through the choice ofm and n. One solution to achieving a
large parabolic potential region and a large△v for a given total optical energymay lie in the superposition of
higher-orderHermite–Gaussianmodes, as proposed in [37] in the context of atomic beam imaging.

3. That λ△ ∝v 2 (as expected of a ponderomotive force scheme [25]) suggests that greater net impulse may be
achieved via longer-wavelength sources. Note, however, that increasing thewavelength increases the pulse
duration for the same number of temporal cycles, whichmayweaken the assumption that the particle’s
position relative to the intensity well does not change significantly during the interaction.

The focal time (the time ofmaximal compression) of a particle pulse with a velocity chirp can be estimated
with the formula

=
△

t
r

v
, (20)f

0

T

where ≡ △ +v v vT 0.△r0 and v0 refer respectively to the half-width of the particle pulse and the velocity of a
particle at the pulse’s edge, along the dimension of compression and immediately before the interaction.△v is
the velocity change induced in the particle at the pulse’s edge as a result of the interaction.

4.Numerical simulations

Tonumericallymodel the laser–electron interaction, we solve the exactNewton–Lorentz equation using an
adaptive-step fifth-order Runge–Kutta algorithm [38]. The coordinates of each particle are assigned in a quasi-
random fashion usingHalton sequences [38]. For the laser pulses, we employ first-orderHermite–Gaussian
modes that are exact (i.e. non-paraxial) solutions ofMaxwell’s equations in free space.We readily obtain the
fields of a TEM10modewith a Poisson spectrumby using theHertz vector potential

Π Π⃗ = ∂
∂

⃗
x

(21)10 00

in the relations [39]

 Π⃗ = ∂
∂

× ⃗{ }B
c t

Re
1

,
2 10

  Π⃗ = × × ⃗{ }E Re . (22)10

The vector potential corresponding to a fundamental Gaussianmode is [40, 41]

Π Π⃗ =
′

−+
− −

−
− −( )

R
f fx̂

1
, (23)s s

00 0
1 1

where ω= − ± ′ +± ( )f s t kR ka1 (i ) i , ′ = + + +R x y z a( i )2 2 2 1 2⎡⎣ ⎤⎦ , andΠ0 is a complex constant. The

degree of focusing and the pulse duration are controlled through parameters a and s via relations forwhich good
analytical approximations have been derived [40, 41]. The non-paraxial Gaussian beam reduces to the phasor of
the paraxial Gaussian beam in the paraxial limit [42], so the description (21)–(23) is consistent with (6)–(9).

Unless otherwise specified, all numerical simulations use optical pulses of wavelength λ μ= 0.8 m, waist
radius μ=w 180 m0 , and (intensity) full-width-half-maximum (FWHM)pulse duration τ = 50 fs. Each optical
pulse in the longitudinal compression stage has an energy of 17.5 mJ, whereas each pulse in the transverse
compression stage has an energy of about 26 mJ. Such specifications fall well within the realmofwhat is
experimentally achievable today. The initial 30 keV electron pulse is a zero-emittance, uniformly-filled ellipsoid
of diameter 28 μmand length 14 μm, corresponding to a FWHMelectron pulse duration of 100 fs. The particles
are non-interacting and our simulation results are thus applicable to single-electron pulses. Although actual
electron pulses have non-zero emittances that vary depending on factors like the the type of emission
mechanismused [6, 43], we use electron pulses with zero initial emittance to performnumerical evaluations of
our scheme that are independent of non-idealities in the initial electron pulse.
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Figures 3(b)–(d) depict the numerically computed phase space distributions of electron pulses immediately
after the longitudinal compression stage, for various optical incidence anglesθl. The longitudinalmagnification

Ml is defined as σ σ≡ ( )M t (0)z zl fl , whereσ σ= t( )z z is the standard deviation in z at time t. Here, t=0 is

defined as the instant captured infigure 3(a) (ii) and =t tfl the instantwhen the longitudinal focus is achieved
(i.e. whenMl isminimized, captured infigure 3(a) (iii)). The transversemagnification at the longitudinal focus

is σ σ≡ ( )M t (0),x xtl fl whereσ σ= t( )x x is the standard deviation in x at time t. Infigure 3(b), we see two

undesirable effects of normal optical incidence in the lab frame, both as analytically predicted in (14): the
significantmodulation in the transverse phase planes, and the substantial smear in the β△ − △zz phase plane,

resulting in a large longitudinal emittance and consequently aweak longitudinal compression factor ≡ −C Ml l
1.

The smeared particle distributions are largely due towalk-off between the center of the ponderomotive potential
well and the center of the electron pulse, whereas the presence of transversemodulation is largely due to the
oblique optical incidence angle in the rest frame of the electron pulse.

Note that the smearing and transversemodulation exist in spite of the fact that the optical pulse duration
τ = 50 fs is several tens of times smaller thanw v0 ( τ ≈ ≫−w v( ) 36 10

1 ), and so nominally satisfies the thin lens
approximation condition prescribed in [17] for normal incidence. This suggests that the thin lens
approximation condition alone is not sufficient for effective longitudinal compressionwhen the kinetic energy is
on the order of 30 keVor greater.

As (14) predicts, injecting the optical pulse at an oblique angle according to (1) decouples the longitudinal
modulation from the transversemodulation at the lowest order and significantly improves the compression
factor from the normal incidence case infigure 3(b). This is shown infigure 3(c), wherewe achieve a
compression factor of =C 729l , taking the 100 fs electron pulsewell into the attosecond regime. Further
decreasing the incidence angle, as we do infigure 3(d), gives rise again to the substantial smearing of particle
distributions in the β△ − △zz phase plane, as well asmodulations in the transverse phase planes. The
sensitivity of the longitudinal compression to the optical incidence angle in the lab frame is further illustrated in
figure 4(a).

Note that the area occupied in a two-dimensional phase plane is not conserved in the interaction due to
inter-dimensional coupling caused by a non-zeromagnetic field. This does not violate Liouville’s theorem,
which states that the six-dimensional phase space volume is conserved in aHamiltonian system.Note also that
the electron pulse is affected equally in the β△ − △xx and β△ − △yy phase planes due to our use of both

pulses I and II infigure 1(a), instead of attempting the longitudinal compressionwith only one of them.
Figures 3(e)–(g) depict the numerically computed phase space distributions of electron pulses immediately

after the transverse compression stage, for various optical incidence anglesθt. The transversemagnification is

defined as σ σ≡ ( )M t (0),x xt ft where tft is the time at whichMt isminimal. The longitudinalmagnification at

the transverse focus is σ σ≡ ( )M t (0)z zlt ft . Note that because the configuration infigure 1(a) subjects the

electron pulse to similar treatments in x and y at the lowest order,σy behaves essentially in the sameway asσx.

The increase in β△ x y, (and subsequent decrease in tft) asθt decreases is as analytically predicted in (19).

Although the transverse compression ratio is a relatively weak function ofθt, we see infigure 4(b) that the choice
ofθt can significantly affect the longitudinal compression ratio in a three-dimensional compression scheme via
higher-order terms of the transverse compression stage, withmaximum longitudinal compression achieved
whenθ = °0t .

Figures 4(c) and (d) show the sensitivity of the compression to the displacement of the bunch centroid from
the intensityminimumduring the interaction. For the cases considered, one should aim to keepθl within °0.1 of
its optimal value, and the electron bunch centroidwithin w0.01 0 of the intensityminimum (values
approximated by considering the half-width-half-maximumof the compression).

Using the simulation parameters of figure 3(c) in (15), we obtain△ ≈ × −v c3.925 10l
6 at△ = −z 6.627

μm(actual value β△ = × −3.894 10z
6, relative error 0.80%). For the transverse compression cases, (19) yields

△ ≈ × −v c3.671 10t
6 at△ = −x 6.945 μminfigure 3(e) (actual value β△ = × −3.644 10x

6, relative error

0.74%) ;△ ≈ × −v c4.113 10t
6 at△ = −x 6.944 μm infigure 3(f) (actual value β△ = × −4.081 10x

6, relative

error 0.78%); and△ ≈ × −v c5.010 10t
6 at△ = −x 6.943 μm infigure 3(g) (actual value β△ = × −4.974 10x

6,
relative error 0.72%). These examples demonstrate the accuracy of (15) and (19) in estimating the velocity chirp
induced by the interaction.

While themomentummodulations in these examples are small, they are stillmore than two orders of
magnitude greater than theminimummomentum spread required by theHeisenberg uncertainty principle for
the electron pulse dimensions considered (Δ Δ ⩾ x p 2x gives Δγβ ⩾ × −1.4 10x

8 for Δ μ=x 14 m).
Nevertheless, actually producing an electron bunchwith an emittance small enough for the bunch to be affected
by such smallmodulations is currently very challenging (required emittanceϵ Δ Δγβ∼ <x 0.1 nmx x ). In actual
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implementations, largermomentummodulations— and hencemore realistic emittance requirements—are
readily achievable by, for instance, increasing the laser intensity (e.g., by tighter focusing) or introducingmore
stages in the cascade offigure 1(b). For single-electron sources in the tens-of-keV range, emittances as low as
3 nmhave been demonstrated [43].

The negative velocity chirp infigure 3(c) causes the 30 keV electron pulse to compress longitudinally as it
continues propagating after the interaction. Figure 5(a) shows the evolution of the electron pulse’s transverse

Figure 4. Sensitivity of compression ratios to (a)θl in a longitudinal compression scheme, (b)θt in a three-dimensional compression
scheme, (c) longitudinal displacement Δzc of the bunch centroid from the intensityminimum in a longitudinal compression scheme,
and (d) transverse displacement Δyc of the bunch centroid from the intensityminimum in a transverse compression scheme (along y).

Figure 5. Longitudinal compression of a 30 keV electron pulse from100 fs to 137 as (longitudinal compression factor =C 729l ): (a)
evolution of standard deviations in y and z, and corresponding spatial distributions at the longitudinal focus (vertical dotted line in
(a)) in the (b) y–x and (c) y–z planes. Three-dimensional compression of a 30 keV electron pulse from a duration of 100 fs and a
diameter of 28 μmto a duration of 137 as and an effective diameter of 0.153 μm( =C 729l , =C 183t ): (d) evolution of standard
deviations in y and z, and corresponding spatial distributions at the focus (vertical dotted line in (d)) in the (e) y–x and (f) y–zplanes.
105 particles were used in each simulation. In (a) and (d), the standard deviation in xwas omitted as it practically lies over that in y.
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and longitudinal standard deviationswith time.Note that the transverse spread remains practically unchanged
from its initial value, even as the electron pulse is compressed from a pulse duration of 100 fs to one of 137 as
( =C 729l ). The electron pulse distribution at the longitudinal focus,marked by a vertical dotted line in
figure 5(a), is shown infigures 5(b) and (c). The higher-order nonlinear components of the induced velocity
chirp prevents the ellipsoid from collapsing into a perfectlyflat pancake.

Figures 5(d)–(f) depict the three-dimensional compression of a 30 keV electron pulse from a duration of 100
fs and a diameter of 28 μmto a duration of 137 as and a diameter of 0.153 μm( =C 729l , =C 183t ).θl satisfies
(1) andθ = °0t . Note that simultaneous transverse and longitudinal compression is achievedwithout affecting
the longitudinal compression ratio of the purely-longitudinal-compression scheme infigure 5(a).

Figure 6 depicts the transverse compression of a 30 keV, 1 fs electron pulse from a diameter of 28 μmto one
of 0.156 μm( =C 179t ).θ = °0t here. Infigure 6(a), we see that the longitudinal spread remains practically
unchanged from its initial value even as the electron pulse is focused transversely to a very small spot. This
demonstrates the ability of the proposed scheme to focus ultrashort electron pulses without inducing temporal
resolution-limiting distortions in them.

The −Uw0
4 dependence in (13) and (17) implies that significant energy savings are possible with tighter

focusing. Decreasing the beamwaist radius, however, enhances higher-order distortions that limit the
maximumachievable compression. Figure 7 illustrates the tradeoff between compression factor and pulse
energy for the value of −Uw0

4 and the electron pulse used infigures 3 and 5. That themagnification scales as −w0
2 is

consistent with the fact that the dominant higher-order distortions scale as ϵ( )O d
2 in (15) and (19). Infigure 7,U

Figure 6.Transverse compression of a 30 keV, 1 fs long electron pulse from adiameter of 28 μmto an effective diameter of 0.156 μm
(transverse compression factor =C 179t ): (a) evolution of standard deviations in y and z, and corresponding spatial distributions at
the transverse focus (vertical dotted line in (a)) in the (b) y–x and (c) y–zplanes.

Figure 7. Scaling ofmagnificationwith optical beamwaist for the optical and electron pulses offigures 3 and 5: (a) longitudinal
compression only, (b) transverse compression only, and (c) three-dimensional compression. (d) plots the scaling of energyUwith
beamwaistw0 when

−Uw0
4 is kept constant, fromU=27 μJ at =w0 30 μmtoU=270mJ at =w0 300 μm.θl satisfies (1) andθ = °0t .
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refers to the total energy used in the longitudinal compression stage. Sinceθ = °0t , onemay infer from (19) that
the energy used for compression in each transverse dimension is typically smaller by a factor of about β+(1 ) so
that the longitudinal and transverse foci coincide in the three-dimensional compression scheme. Figure 7 shows
that decent compression factors are already attainable with relatively low-energy optical pulses. Infigure 7(a),
for instance, a longitudinal compression factor of 20 is already achievable with optical pulses of waist radius
30 μmand total energy 27 μJ.

Althoughwe have focused on single-electron pulses in this work, the proposed scheme can also be used for
multi-electron pulse compression. This is especially (but not only) truewhen the electron pulse approximates a
uniformly-filled ellipsoid or contains a linear velocity chirp. It should be noted, however, that typicalmulti-
electron pulses havemuch larger diameters—which are on the order of a fewhundreds of μm—than the
electron pulses considered here, necessitatingmore energetic optical pulses to achieve the same compression
qualities and focal times.

5. Conclusion

Wehave proposed an all-optical three-dimensional electron pulse compression scheme. The scheme comprises
a succession ofHermite–Gaussian opticalmodes that effectively fashions a three-dimensional optical trap in the
electron pulse’s rest frame. Compression in eachCartesian dimension can be controlledwithout affecting
electron pulse properties in orthogonal dimensions, at the lowest order.We showedmathematically that the
right choice of optical incidence angle is necessary in longitudinal compression so that the induced velocity
change is not a function of transverse coordinates and not accompanied by transverse phase planemodulations,
at the lowest order. Although the transverse compression ratio is a relatively weak function ofθt for 30 keV
electrons, the choice ofθt can significantly affect the longitudinal compression ratio in a three-dimensional
compression scheme, withmaximum longitudinal compression achievedwhenθ = °0t .We also derived
analytical expressions approximating the net velocity change induced in a charged particle by aHermite–
Gaussian optical pulse of arbitrary order and incidence angle. These analytical expressions can be used to
estimate the velocity chirp aquired by an electron pulse as a result of the laser–electron interaction.

Finally, using optical pulses that are realizable experimentally, we numerically demonstrated the
longitudinal compression of a 30 keV electron pulse from100 fs to 137 as (729 times compression), the three-
dimensional compression of a 30 keV electron pulse from a duration of 100 fs and a diameter of 28 μmto a
duration of 137 as (729 times compression) and a diameter of 0.153 μm(183 times compression), and the
transverse compression of a 1 fs long, 30 keV electron pulse from a diameter of 28 μmto one of 0.156 μm(179
times compression). Even larger compression factors are potentially possible with larger beamwaists, at the cost
of focal time for a given optical pulse energy. Our energy scaling studies show that a compression factor of 20 is
already achievable with a 27 μJ optical pulse of waist radius 30 μm.The required pulse energiesmay be lowered
further still with the cascade scheme offigure 1(b).

The proposed scheme is useful in ultrafast electron imaging for both single- andmulti-electron pulse
compression, and as ameans of focusing ultrashort electron pulses without inducing temporal resolution-
limiting distortions in them. Broader applications of themechanism studied here potentially include
compressing or focusing accelerated protons [44] and neutral atoms [45], enhancing the quantumdegeneracy
of electron packets [46], creatingflat electron beams [47], and creating ultrashort electron bunches for coherent
terahertz emission [48].
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