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Abstract

We propose an all-optical, three-dimensional electron pulse compression scheme in which Hermite—
Gaussian optical modes are used to fashion a three-dimensional optical trap in the electron pulse’s rest
frame. We show that the correct choices of optical incidence angles are necessary for optimal com-
pression. We obtain analytical expressions for the net impulse imparted by Hermite—Gaussian free-
space modes of arbitrary order. Although we focus on electrons, our theory applies to any charged
particle and any particle with non-zero polarizability in the Rayleigh regime. We verify our theory
numerically using exact solutions to Maxwell’s equations for first-order Hermite—Gaussian beams,
demonstrating single-electron pulse compression factors of >10% in both longitudinal and transverse
dimensions with experimentally realizable optical pulses. The proposed scheme is useful in ultrafast
electron imaging for both single- and multi-electron pulse compression, and as a means of cir-
cumventing temporal distortions in magnetic lenses when focusing ultrashort electron pulses. Other
applications include the creation of flat electron beams and ultrashort electron bunches for coherent
terahertz emission.

1. Introduction

The ability of ultrafast x-ray and electron pulses to probe structural dynamics with atomic spatiotemporal
resolution has fueled a wealth of exciting research on the frontiers of physics, chemistry, biology and materials
science [ 1-4]. Although electrons lack the penetration depth of x-rays, the large scattering cross section of
electrons (10°~10° times that of x-rays of the same energy [5, 6]) and relative availability of high intensity table-
top electron sources favor the use of electrons especially in the study of surfaces, gas phase systems and
nanostructures.

An electron pulse tends to expand and acquire a velocity chirp as it travels, firstly due to space—charge (i.e.
inter-electron repulsion), and secondly due to dispersion resulting from an initial velocity spread. The
propagation of electron pulses has been the subject of extensive study [7-9]. To ensure that the electron pulse
arrives at the sample or detector with the desired properties (e.g., spot size, coherence length, pulse duration),
many ultrafast electron imaging setups adopt means to compress the electron pulse transversely and
longitudinally. Longitudinal compression methods include the use of electrostatic elements [ 10], microwave
cavities [11-15], and optical transients [16, 17]. These techniques can potentially compress single-electron
pulses [18, 19] to attosecond-scale durations [ 16, 20]. Tranverse compression, or focusing, of an electron pulse
is typically achieved with standard charged particle optics like magnetic solenoid lenses. Femtosecond electron
pulses, however, suffer significantly from temporal distortions in magnetic lenses and require more complicated
combinations of charged particle optics for isochronic imaging [21].

In this paper, we propose a scheme for the three-dimensional compression of electron pulses using only
optical transients, with no static fields involved. The scheme comprises a succession of Hermite—Gaussian
optical modes that effectively fashions a three-dimensional optical trap in the electron pulse’s rest frame. Such a
scheme is useful in ultrafast electron imaging for both single- and multi-electron pulse compression, and as a

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Schematic diagram of three-dimensional electron pulse compression technique using pulsed first-order Hermite—

Gaussian optical modes, which are portrayed as pairs of shiny red lozenges. Green lines lie in the x—z plane, black lines in the y—z plane.

Dotted lines are the beam axes down which the optical pulses propagate. The electron pulse travels at speed v = fic in the +z-direction,
-1/

cbeing the speed of light in vacuum. y = ( 1-p 2) "2 is the Lorentz factor. (b) Schematic diagram illustrating how a single optical

pulse may be used to implement a succession of compression stages. Lines ending in filled arrowheads sketch the trajectories of optical
(red) and electron (gray) pulses, with the arrowheads terminating at the interaction points.

means of circumventing temporal distortions in magnetic lenses [21] when focusing ultrashort electron pulses.
Methods of generating Hermite—Gaussian modes include the use of waveplates [22] and excitation in diode
lasers [23].

In section 2, we present an overview of the three-dimensional electron pulse compression scheme, and
describe how a succession of compression stages may be implemented with a single optical pulse. In section 3, we
show mathematically that the right choice of optical incidence angle is necessary for optimal longitudinal
compression, and obtain analytical expressions for the net velocity change induced in a charged particle by the
passage of an optical pulse. In section 4, we illustrate the conclusions of section 3 with exact numerical
simulations of the laser—electron interaction. We demonstrate single-electron pulse compression factors of
>10” in both longitudinal and transverse dimensions using experimentally-realizable optical pulses, and study
the energy scaling laws of the compression scheme.

2. Overview

A charged particle in an electromagnetic wave experiences a time-averaged force called the ponderomotive force
[24, 25] that pushes the particle towards regions of lower optical intensity in the particle’s rest frame. Dielectric
particles are also subject to this phenomenon, and applications of electromagnetic ponderomotive forces have
included atomic cooling, optical manipulation of living organisms, plasma confinement, and electron
acceleration [26-28]. The optical ponderomotive force has also been used in the characterization of ultrashort
electron pulses [29-32].

Here, we use the ponderomotive force to compress an electron pulse by subjecting the electron pulse to the
intensity minimums of appropriately-oriented Hermite—Gaussian modes, as illustrated in figure 1(a).
Compression in each Cartesian dimension can be controlled without affecting electron pulse properties in
orthogonal dimensions, at the lowest order. Although either pulse I or I suffices for longitudinal compression,
using two identical pulses in the configuration shown ensures that any higher-order modulations affecting
transverse electron pulse properties do so equally in x and y. In figure 1(a), pulses I and Il control compression in
z, whereas pulses IIl and IV control compression in y and x respectively. The stages (and optical pulses) may be
arbitrarily ordered and cascaded, as long as inter-particle interactions and dispersion affect the electron pulse
negligibly between interactions. Since the ponderomotive force is a nonlinear effect (i.e. not directly
proportional to electric field), the optical pulses should be sufficiently far apart so that interference between the
fields of different pulses does not occur.

The use of an optical pulse’s transverse intensity profile for electron pulse compression has been proposed in
[17]. However, the scheme in [17] uses an optical incidence angle normal to the electron path in the lab frame, a
sub-optimal configuration for electrons of non-zero speed. In addition, the scheme in [17] uses a Laguerre—
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Figure 2. Intensity profile of pulse II (see figure 1(a)) at three instances in time in the (a) lab frame and (b) rest frame of a 30 keV
electron pulse. In the lab frame, the temporal pulse and carrier wavefront are obliquely incident at ) = 70.9°, in accordance with (1),
giving rise to normal incidence in the rest frame. Double-primes denote rest frame variables.

Gaussian ‘donut’ mode, which—even for a stationary electron pulse—couples compression in the longitudinal
dimension to that in exactly one transverse dimension.

Intuitively, the oblique optical incidence angle of the longitudinal compression stage is motivated by the
desire for normal optical incidence in the electron pulse’s rest frame. This implies a lab frame incidence angle of

c sin 6/ 1
6, = arctan e W arctan(—), (1)
4 (c cos Oy + v) P

where the electron pulse propagates in the +z-direction with speed v = fic (c the speed oflight in vacuum),

-172
corresponding to Lorentz factory = ( 1-p 2) . The first equality in (1) expresses the relation between the

rest frame incidence angle 6,” and 8, . The second equality was made by setting ;" = 90°. We have taken the
optical group velocity as ¢, a valid assumption [33] for the paraxial, many-cycle optical pulses we are interested
in. The physics behind (1) is illustrated in figure 2, which shows how oblique optical incidence in the lab frame
corresponds to normal optical incidence in the electron pulse’s rest frame. In the next section, we show
mathematically that (1) is optimal in the sense that when it is satisfied, the induced velocity change in the
longitudinal direction is not a function of transverse coordinates and not accompanied by transverse phase plane
modulations, at the lowest order. Figure 3(a) illustrates the physical mechanism of the longitudinal compression
scheme: the laser—electron interaction induces a velocity modulation in the electron pulse, which then
compresses as it continues to propagate. The transverse compression scheme works according to the same
principles, except that the desired velocity modulation is now along a transverse dimension.

Since the electron pulse is stationary along its transverse dimensions, normal incidence in the rest frame is
achieved with any value of ; for transverse compression. Indeed, we see in section 4 that the transverse
compression of 30 keV electrons is a relatively weak function of ;. However, the choice of §; can significantly
affect the longitudinal compression ratio in a three-dimensional compression scheme via higher-order terms of
the transverse compression stage, with the best results achieved when 8, = 0°.

Equation (1) is also the condition for group velocity matching between electron and optical pulses along the
axis of electron pulse propagation (i.e.c cos 6) = ¢ff = v). This observation motivates the cascaded compression
scheme of figure 1(b), in which an optical pulse (either pulse I, II, IIT or IV) is reflected and re-focused by a
succession of optical stages, so as to be repeatedly incident upon the electron pulse, allowing the optical pulse to
be utilized to its maximum capacity. If (1) is satisfied, the interval between laser—electron coincidences is

D

Teoin = (2)
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Figure 3. (a) Physical mechanism of the longitudinal compression scheme: (i) the initial electron pulse has a finite spread in
momentum and position; (ii) the laser—electron interaction accelerates the back electrons and decelerates the front electrons; (iii) as
the pulse propagates, the back electrons catch up with the front electrons, leading to electron pulse compression. Az = z — (z)
denotes the particles’ displacement from the bunch centroid along the z-dimension (and so on for the other variables). Phase plane
distributions of the 30 keV electron pulse immediately after the longitudinal compression stage are shown for optical incidence angles
(b) 8 = 90°, (c) 6, = arctan(1/yp) = 70.9°,and (d) 6) = 35.4°. Phase plane distributions of the electron pulse immediately after the
transverse compression stage are shown for optical incidence angles (e) 6; = 90°, (f) 6, = 70.9° and (g) 6; = 35.4°. Focal times tg g
and compression ratios C} ; are indicated for each case. 1000 particles were used in each simulation.

assuming that the electron pulse is injected along the axis of symmetry of the setup, and that the optical
components introduce no delays. To avoid optical interference between successive interactions, D should
generally be chosen so that T;,,;, > 7 is satisfied, 7 being the optical pulse duration. With suitable combinations
of optics, one can also implement the design in figure 1(b) for any optical incidence angle, or such that a single
optical pulse is used to realize several or all of pulses I, I, IIT and IV, since the four types of pulses essentially differ
only in orientation.

3. Theory

In this section, we obtain analytical expressions approximating the ponderomotive potential and net impulse
transfer associated with transverse and longitudinal compression by pulsed Hermite—Gaussian TEM,,,, modes
of arbitrary order. We show mathematically that when (1) is satisfied, the induced velocity change for
longitudinal compression is not a function of transverse coordinates and not accompanied by transverse phase
plane modulations, at the lowest order. Although we focus on charged particles, our treatment may be extended
to any particle with non-zero polarizability in the Rayleigh regime (particle size much smaller than
electromagnetic wavelength) by the simple replacement of a constant factor.

A charged particle in an electromagnetic wave experiences a force [24, 25]

F=—VU, + ..., (3)
where the ponderomotive potential U, is
2
q - P
U, = , (4)
P 4y a? ‘ ¢

and g and my are respectively the particle’s charge and rest mass. The particle sees the electric field
E= (Ea et + c.c.)/ 2, where E, varies slowly in time compared to the carrier factor andi = +/—1. The ellipsis
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in (3) hides terms proportional to e*! or e*2*, Equation (3) was derived from the Newton-Lorentz equation

in the rest frame of the initial particle. As such, the notion that a particle experiences a force proportional to the
gradient of electromagnetic intensity is valid in the rest frame of the particle, and not necessarily in a frame where
the particle moves with any substantial velocity. The net momentum imparted to a particle by the passage of a
many-cycle pulse is then

Ap = [Far=- [ vuar (5)

Physically, the electric field causes the charged particle to oscillate about its initial position, generating an
effective dipole that is subject to the same radiation pressure forces [34] experienced by dielectric particles in
optical tweezers [26]. In fact, replacing q /mow? by a/2 turns (4) into the ponderomotive potential of a particle in
the Rayleigh regime, where the particle’s polarization P = oE. The results in this paper thus also apply to
polarizable particles.

A paraxial, many-cycle electromagnetic pulse can be modeled using the vector potential ansatz

A= Re{jei"’g(?]}, (6)
0

where each component of A is a solution of the paraxial wave equation [35], g (- ) a real even function describing
the pulse shape such thatlimy¢|— g (§) = 0,&; a constant associated with pulse duration, ¢ = wt — k(z — z;)
andy = & + y, with z; the pulse’s initial position (at t= 0) and y, a phase constant. x, y and zare Cartesian

coordinates. A isa slowly-varying function of only spatial coordinates such that a,j{ , ()),X = O(eq)and

d,A=0 ( ed ), where the beam divergence angleeq < 1. To ensure that the particle bunch interacts with the
electromagnetic pulse only when the bunch is close to the electromagnetic beam axis (and hence the center of the
ponderomotive potential well), we use pulses such thateg < &' < 1. The electromagnetic fields are obtained
via the identities [36]

B=VxA

E:czva-ﬁdt—%, (7)

in which we have applied the Lorenz gauge.

Consider anon-zero 6 (6 = 6; or 6) and a particle propagating in the +z direction with speed |V | = fic. We
henceforth denote all variables in the native frame of the electromagnetic pulse with prime superscripts, so the
pulse propagates in the +2z’ direction, and all variables in the particle’s rest frame with double-prime
superscripts. Non-primed variables x, y, z, t arelab frame variables, defined in accordance with figure 1(a).
Note that in the rest frame,  in (4) should be replaced by the Doppler-shifted frequency w” = wy (1 — f cos 6).
Applying the appropriate rotation and Lorentz transformation operators to (6) and (7), we obtain the
ponderomotive potential in the rest frame as

2
” q ( 17
U =—-,|[|A

P 411”!0 ‘ *

"+ |4 )¢ 1+ 0t +o(a") + 0m)] ®)

aresult that applies for general A satisfying the paraxial wave equation, assuming that A is on the order of the
transverse components or less.
For the linearly-polarized Hermite—Gaussian TEM,,,, mode,
r )
i y")(L] , ©

JZ)H”( f/*

where A is a normalization constant, f' = i/(i + 2z’ /zg ),92/ = 2x' /w7 = N2y w20 = awi/Aisthe

-/

I

= X'Aof’ exp(—f’p’z)Hm<

Rayleigh range, w; is the beam waist radius, p’ = /x'* + y'* /wy,and H,,, ( - ) is the Hermite polynomial of
order m (Hy(x) = 1, H; (x) = 2x etc), withm, n € N (the set of natural numbers including 0). The beam
divergence angleiseq = 2/(kwy). From (6) and (7), the peak power P transported in the propagation direction is

P= //‘Sz’odx’dy' ~ w*Adceqnwd 2" nlml, (10)

where S, denotes the z-directed Poynting vector S, = E' x H' - # evaluated at the pulse peak, focal plane and
carrier amplitude. € is the permittivity of free space. The energy U of a single pulse is related to its peak power as
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UE/]S;|Zr:0dx/dy’dt’zg/f(g—;)d(%). (11)

Longitudinal compression is achieved with the TEM,,,, mode when m is odd and n is even. In that case

’ ’ -1 ’
=] M) ()
x[1+0(&") +0((n+m+1ed) + 0P |, (12)

where

q2* U mln!

K= s _ 12 2’
mieoc’ wy 2 [(m — 1)/2]1* (n/2)!

(13)

and we have applied Taylor expansions about the origin in (8) to obtain (12). The net impulse in the rest frame is

then
nir=- [ vugar
— cos 0)Ax" + sin GAZ" ,
=m0K1[}/(ﬂ C0SO)AX + sin 04z ][a%(cose—ﬂ) —2M]
y*(1 = p cos 6 Y
x[1+o(.§0‘1)+0((n+m+ 1)e§)+0(ﬂ)], (14)

where the particle’s rest frame displacement from the bunch centroid is (Ax”, Ay”, Az”), which we assume does

not change significantly during the interaction. To eliminate the x-directed modulation and the Ax"-dependence
of the z-directed modulation in the lowest-order term, we must choose @ such that cos 8 = f, a condition
equivalent to (1). The lab-frame velocity change is then

A7 = —2K142[1 +0(&™") +0((n+m+1)ef) + O(ﬁ)], (15)

where the particle’s lab frame displacement from the bunch centroid is (Ax, Ay, Az). Thelongitudinal impulse
in the lab frame follows from the relation Ap; = moy* /A + O ( Avi ) The linear dependence in the lowest-
order term of (15) corresponds to a parabolic potential profile. In the absence of space—charge and momentum
spread, a particle pulse would be compressed by a perfectly parabolic potential to a zero extent.

Transverse compression is achieved with the TEM,,,, mode when m is even and n is odd. In this case,

—1
v _ MoK A €N 22 €
Upe=— l/g(fo]dt] yg(éo)

X [1 + 0(50‘1) + O((n +m+ l)ec%) + O(ﬂ)], (16)

where

g¥* U mln!

K= s _ 12 2
mgeoc’ wy 2 [(n—1)/2]1" (m/2)!

(17)

The net transverse impulse imparted by the passage of a single pulse in the rest frame is

=7 1
- _ K— A ”a
AP o ty(l—ﬂcosé’) r
x[1+o(50-1)+o((n+m+ 1)e§)+0(ﬂ)], (18)
corresponding to a net lab-frame velocity change of
1
AV = ) Ki————A
= t;/2(1—ﬁcost9) y
X[I+O<§0_l)+0((n+m+ 1)ej)+0(/3)]. (19)

As @approaches 0°, the velocity change becomes larger, a result of improved group velocity matching along the
optical beam axis. The transverse impulse in the lab frame follows from the relation
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Ap, = meyy A% + O ( Avf) Several noteworthy features of the pulse compression scheme are evident from
(13),(15),(17)and (19):

1. Atthelowest order, net velocity change is independent of pulse duration parameter & and pulse shape g.

2. A trade-off between the size of the parabolic potential region and the strength of the compression exists in
two ways: through the laser waist radius wy, and through the choice of 11 and #n. One solution to achieving a
large parabolic potential region and a large /\v for a given total optical energy may lie in the superposition of
higher-order Hermite—Gaussian modes, as proposed in [37] in the context of atomic beam imaging.

3. That /\v A2 (as expected of a ponderomotive force scheme [25]) suggests that greater net impulse may be
achieved vialonger-wavelength sources. Note, however, that increasing the wavelength increases the pulse
duration for the same number of temporal cycles, which may weaken the assumption that the particle’s
position relative to the intensity well does not change significantly during the interaction.

The focal time (the time of maximal compression) of a particle pulse with a velocity chirp can be estimated
with the formula

An

tr =
[vr]

, (20)

wherevy = Av + w. /\roand v, refer respectively to the half-width of the particle pulse and the velocity of a
particle at the pulse’s edge, along the dimension of compression and immediately before the interaction. A v is
the velocity change induced in the particle at the pulse’s edge as a result of the interaction.

4. Numerical simulations

To numerically model the laser—electron interaction, we solve the exact Newton—Lorentz equation using an
adaptive-step fifth-order Runge—Kutta algorithm [38]. The coordinates of each particle are assigned in a quasi-
random fashion using Halton sequences [38]. For the laser pulses, we employ first-order Hermite—Gaussian
modes that are exact (i.e. non-paraxial) solutions of Maxwell’s equations in free space. We readily obtain the
fields of a TEM, mode with a Poisson spectrum by using the Hertz vector potential

. 9 -
HIO = —H()() (21)
ox
in the relations [39]

. 10 .
B =Red ——VXxI¢,
{czdt 10}

E’:Re{Vx V x ﬁm}. (22)

The vector potential corresponding to a fundamental Gaussian mode is [40, 41]

T = moﬁ(f;s—l ), (23)
. . . L2 .
where f, =1 — (i/s) (a)t + kR + 1ka), R = [x2 +y2+ (z+ 1a)2] ,and [T, is a complex constant. The
degree of focusing and the pulse duration are controlled through parameters a and s via relations for which good
analytical approximations have been derived [40, 41]. The non-paraxial Gaussian beam reduces to the phasor of
the paraxial Gaussian beam in the paraxial limit [42], so the description (21)—(23) is consistent with (6)—(9).
Unless otherwise specified, all numerical simulations use optical pulses of wavelength A = 0.8 ym, waist
radiuswy = 180 um, and (intensity) full-width-half-maximum (FWHM) pulse duration z = 50 fs. Each optical
pulse in the longitudinal compression stage has an energy of 17.5 mJ, whereas each pulse in the transverse
compression stage has an energy of about 26 m]J. Such specifications fall well within the realm of what is
experimentally achievable today. The initial 30 keV electron pulse is a zero-emittance, uniformly-filled ellipsoid
of diameter 28 ym and length 14 ym, corresponding to a FWHM electron pulse duration of 100 fs. The particles
are non-interacting and our simulation results are thus applicable to single-electron pulses. Although actual
electron pulses have non-zero emittances that vary depending on factors like the the type of emission
mechanism used [6, 43], we use electron pulses with zero initial emittance to perform numerical evaluations of
our scheme that are independent of non-idealities in the initial electron pulse.

7



I0OP Publishing

NewJ. Phys. 17 (2015) 013051 LJWongetal

Figures 3(b)—(d) depict the numerically computed phase space distributions of electron pulses immediately
after the longitudinal compression stage, for various optical incidence angles 6. The longitudinal magnification

M, is defined as M| = o, ( ta ) /0, (0), where s, = o, (t) is the standard deviation in z at time ¢. Here, t =0 is

defined as the instant captured in figure 3(a) (ii) and ¢ = tg the instant when the longitudinal focus is achieved
(i.e. when M, is minimized, captured in figure 3(a) (iii)). The transverse magnification at the longitudinal focus
isMy = o, ( ta ) /06, (0), where s, = o, () is the standard deviation in x at time t. In figure 3(b), we see two
undesirable effects of normal optical incidence in the lab frame, both as analytically predicted in (14): the
significant modulation in the transverse phase planes, and the substantial smear in the /A, — /\z phase plane,
resulting in a large longitudinal emittance and consequently a weak longitudinal compression factor C; = M;™".
The smeared particle distributions are largely due to walk-off between the center of the ponderomotive potential
well and the center of the electron pulse, whereas the presence of transverse modulation is largely due to the
oblique optical incidence angle in the rest frame of the electron pulse.

Note that the smearing and transverse modulation exist in spite of the fact that the optical pulse duration
7 = 50 fsis several tens of times smaller than wy/v (wy (vr)™! = 36 > 1), and so nominally satisfies the thin lens
approximation condition prescribed in [17] for normal incidence. This suggests that the thin lens
approximation condition alone is not sufficient for effective longitudinal compression when the kinetic energy is
on the order of 30 keV or greater.

As (14) predicts, injecting the optical pulse at an oblique angle according to (1) decouples the longitudinal
modulation from the transverse modulation at the lowest order and significantly improves the compression
factor from the normal incidence case in figure 3(b). This is shown in figure 3(c), where we achieve a
compression factor of C; = 729, taking the 100 fs electron pulse well into the attosecond regime. Further
decreasing the incidence angle, as we do in figure 3(d), gives rise again to the substantial smearing of particle
distributions in the Aﬂz — /\z phase plane, as well as modulations in the transverse phase planes. The
sensitivity of the longitudinal compression to the optical incidence angle in the lab frame is further illustrated in
figure 4(a).

Note that the area occupied in a two-dimensional phase plane is not conserved in the interaction due to
inter-dimensional coupling caused by a non-zero magnetic field. This does not violate Liouville’s theorem,
which states that the six-dimensional phase space volume is conserved in a Hamiltonian system. Note also that
the electron pulse is affected equally in the A, — Axand Aﬂy — /\y phase planes due to our use of both
pulses I and Il in figure 1(a), instead of attempting the longitudinal compression with only one of them.

Figures 3(e)—(g) depict the numerically computed phase space distributions of electron pulses immediately
after the transverse compression stage, for various optical incidence angles 6. The transverse magnification is

defined as M; = o, ( L ) /0, (0), wheretg is the time at which M is minimal. The longitudinal magnification at

the transverse focus is Mj; = o, ( tg ) /0,(0). Note that because the configuration in figure 1(a) subjects the
electron pulse to similar treatments in x and y at the lowest order, 6, behaves essentially in the same way as o.
The increase in A/);)y (and subsequent decrease in t) as ; decreases is as analytically predicted in (19).
Although the transverse compression ratio is a relatively weak function of 8;, we see in figure 4(b) that the choice
of 0; can significantly affect the longitudinal compression ratio in a three-dimensional compression scheme via
higher-order terms of the transverse compression stage, with maximum longitudinal compression achieved
when 6, = 0°.

Figures 4(c) and (d) show the sensitivity of the compression to the displacement of the bunch centroid from
the intensity minimum during the interaction. For the cases considered, one should aim to keep €, within 0.1° of
its optimal value, and the electron bunch centroid within 0.01w of the intensity minimum (values
approximated by considering the half-width-half-maximum of the compression).

Using the simulation parameters of figure 3(c) in (15), we obtain /\v; ~ 3.925 x 10~°cat A\z = —6.627
um (actual value A/)’Z = 3.894 X 107°, relative error 0.80%). For the transverse compression cases, (19) yields
Aw ~ 3.671 X 1075 at /\x = —6.945 ym in figure 3(e) (actual value /\B. = 3.644 x 107, relative error
0.74%) ; Aw =~ 4.113 X 107 % at /\x = —6.944 ym in figure 3(f) (actual value /\B. = 4.081 x 107, relative
error 0.78 %);and Aw =~ 5.010 X 105 at /\x = —6.943 ym in figure 3(g) (actual value A\S. = 4.974 x 107,
relative error 0.72%). These examples demonstrate the accuracy of (15) and (19) in estimating the velocity chirp
induced by the interaction.

While the momentum modulations in these examples are small, they are still more than two orders of
magnitude greater than the minimum momentum spread required by the Heisenberg uncertainty principle for
the electron pulse dimensions considered (AxAp, > 7/2 gives Ayf. > 1.4 X 1078 for Ax = 14 um).
Nevertheless, actually producing an electron bunch with an emittance small enough for the bunch to be affected
by such small modulations is currently very challenging (required emittancee, ~ AxAyf, < 0.1 nm). Inactual
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Figure 4. Sensitivity of compression ratios to (a) 6} in a longitudinal compression scheme, (b) 6, in a three-dimensional compression
scheme, (c) longitudinal displacement Az, of the bunch centroid from the intensity minimum in a longitudinal compression scheme,
and (d) transverse displacement Ay, of the bunch centroid from the intensity minimum in a transverse compression scheme (along y).

5 Evolution Distribution at Focus

Long. only
b A

Long. + Trans.

55 6 ! T i 6y
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Figure 5. Longitudinal compression of a 30 keV electron pulse from 100 fs to 137 as (longitudinal compression factor C; = 729): (a)
evolution of standard deviations in y and z, and corresponding spatial distributions at the longitudinal focus (vertical dotted line in
(a)) inthe (b) y—xand (c) y—z planes. Three-dimensional compression of a 30 keV electron pulse from a duration of 100 fs and a
diameter of 28 ym to a duration of 137 as and an effective diameter of 0.153 um (C; = 729, C; = 183): (d) evolution of standard
deviations in y and z, and corresponding spatial distributions at the focus (vertical dotted line in (d)) in the (e) y—x and (f) y—z planes.
10° particles were used in each simulation. In (a) and (d), the standard deviation in x was omitted as it practically lies over that in y.

implementations, larger momentum modulations — and hence more realistic emittance requirements—are
readily achievable by, for instance, increasing the laser intensity (e.g., by tighter focusing) or introducing more
stages in the cascade of figure 1(b). For single-electron sources in the tens-of-keV range, emittances as low as

3 nm have been demonstrated [43].

The negative velocity chirp in figure 3(c) causes the 30 keV electron pulse to compress longitudinally as it

continues propagating after the interaction. Figure 5(a) shows the evolution of the electron pulse’s transverse
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Figure 6. Transverse compression of a 30 keV, 1 fslong electron pulse from a diameter of 28 ym to an effective diameter of 0.156 ym
(transverse compression factor C; = 179): (a) evolution of standard deviations in y and z, and corresponding spatial distributions at
the transverse focus (vertical dotted line in (a)) in the (b) y—x and (c) y—z planes.
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Figure 7. Scaling of magnification with optical beam waist for the optical and electron pulses of figures 3 and 5: (a) longitudinal
compression only, (b) transverse compression only, and (c) three-dimensional compression. (d) plots the scaling of energy U with
beam waist wy when Uwo_4 iskept constant, from U=27 uJ atwy =30 yumto U =270 m]J atwy = 300 um. 0, satisfies (1) and 6, = 0°.

and longitudinal standard deviations with time. Note that the transverse spread remains practically unchanged
from its initial value, even as the electron pulse is compressed from a pulse duration of 100 fs to one of 137 as
(Cy = 729). The electron pulse distribution at the longitudinal focus, marked by a vertical dotted line in

figure 5(a), is shown in figures 5(b) and (c). The higher-order nonlinear components of the induced velocity
chirp prevents the ellipsoid from collapsing into a perfectly flat pancake.

Figures 5(d)—(f) depict the three-dimensional compression of a 30 keV electron pulse from a duration of 100
fsand a diameter of 28 yum to a duration of 137 as and a diameter of 0.153 um (C; = 729, C, = 183). 6, satisfies
(1) and 6; = 0°. Note that simultaneous transverse and longitudinal compression is achieved without affecting
the longitudinal compression ratio of the purely-longitudinal-compression scheme in figure 5(a).

Figure 6 depicts the transverse compression of a 30 keV, 1 fs electron pulse from a diameter of 28 ym to one
0f0.156 um (C; = 179). 6, = 0° here. In figure 6(a), we see that the longitudinal spread remains practically
unchanged from its initial value even as the electron pulse is focused transversely to a very small spot. This
demonstrates the ability of the proposed scheme to focus ultrashort electron pulses without inducing temporal
resolution-limiting distortions in them.

The Uw; * dependence in (13) and (17) implies that significant energy savings are possible with tighter
focusing. Decreasing the beam waist radius, however, enhances higher-order distortions that limit the
maximum achievable compression. Figure 7 illustrates the tradeoff between compression factor and pulse
energy for the value of Uw; * and the electron pulse used in figures 3 and 5. That the magnification scales as w > is

consistent with the fact that the dominant higher-order distortions scale as O ( ed ) in (15) and (19). Infigure 7, U
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refers to the total energy used in the longitudinal compression stage. Since 8, = 0°, one may infer from (19) that
the energy used for compression in each transverse dimension is typically smaller by a factor of about (1 + f) so
that the longitudinal and transverse foci coincide in the three-dimensional compression scheme. Figure 7 shows
that decent compression factors are already attainable with relatively low-energy optical pulses. In figure 7(a),
for instance, a longitudinal compression factor of 20 is already achievable with optical pulses of waist radius

30 ym and total energy 27 uJ.

Although we have focused on single-electron pulses in this work, the proposed scheme can also be used for
multi-electron pulse compression. This is especially (but not only) true when the electron pulse approximates a
uniformly-filled ellipsoid or contains a linear velocity chirp. It should be noted, however, that typical multi-
electron pulses have much larger diameters—which are on the order of a few hundreds of ym—than the
electron pulses considered here, necessitating more energetic optical pulses to achieve the same compression
qualities and focal times.

5. Conclusion

We have proposed an all-optical three-dimensional electron pulse compression scheme. The scheme comprises
asuccession of Hermite—Gaussian optical modes that effectively fashions a three-dimensional optical trap in the
electron pulse’s rest frame. Compression in each Cartesian dimension can be controlled without affecting
electron pulse properties in orthogonal dimensions, at the lowest order. We showed mathematically that the
right choice of optical incidence angle is necessary in longitudinal compression so that the induced velocity
change is not a function of transverse coordinates and not accompanied by transverse phase plane modulations,
at the lowest order. Although the transverse compression ratio is a relatively weak function of 8, for 30 keV
electrons, the choice of 0, can significantly affect the longitudinal compression ratio in a three-dimensional
compression scheme, with maximum longitudinal compression achieved when 6, = 0°. We also derived
analytical expressions approximating the net velocity change induced in a charged particle by a Hermite—
Gaussian optical pulse of arbitrary order and incidence angle. These analytical expressions can be used to
estimate the velocity chirp aquired by an electron pulse as a result of the laser—electron interaction.

Finally, using optical pulses that are realizable experimentally, we numerically demonstrated the
longitudinal compression of a 30 keV electron pulse from 100 fs to 137 as (729 times compression), the three-
dimensional compression of a 30 keV electron pulse from a duration of 100 fs and a diameter of 28 yumtoa
duration of 137 as (729 times compression) and a diameter of 0.153 ym (183 times compression), and the
transverse compression of a 1 fslong, 30 keV electron pulse from a diameter of 28 ym to one 0f 0.156 um (179
times compression). Even larger compression factors are potentially possible with larger beam waists, at the cost
of focal time for a given optical pulse energy. Our energy scaling studies show that a compression factor of 20 is
already achievable with a 27 ] optical pulse of waist radius 30 gm. The required pulse energies may be lowered
further still with the cascade scheme of figure 1(b).

The proposed scheme is useful in ultrafast electron imaging for both single- and multi-electron pulse
compression, and as a means of focusing ultrashort electron pulses without inducing temporal resolution-
limiting distortions in them. Broader applications of the mechanism studied here potentially include
compressing or focusing accelerated protons [44] and neutral atoms [45], enhancing the quantum degeneracy
of electron packets [46], creating flat electron beams [47], and creating ultrashort electron bunches for coherent
terahertz emission [48].
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