Disentangling the Electronic and Lattice Contributions to the Dielectric Response of Photoexcited Bismuth

Abstract

Elucidating the interplay between nuclear and electronic degrees of freedom that govern the complex dielectric behavior of materials under intense photoexcitation is essential for tailoring optical properties on demand. However, conventional transient reflectivity experiments have been unable to differentiate between real and imaginary components of the dielectric response, omitting crucial electron-lattice interactions. Utilizing thin film interference we unambiguously determined the photoinduced change in complex dielectric function in the Peierls semimetal bismuth and examined its dependence on the excitation density and nuclear motion of the A1g_{1g} phonon. Our modeled transient reflectivity data reveals a progressive broadening and redshift of Lorentz oscillators with increasing excitation density and underscores the importance of both, electronic and nuclear coordinates in the renormalization of interband transitions.Comment: Manuscript (6 pages) plus supplemental material (6 pages

    Similar works

    Full text

    thumbnail-image

    Available Versions