9 research outputs found

    Single photon source characterization with a superconducting single photon detector

    Get PDF
    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons on demand at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g (2) (tau). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.Comment: 8 page

    Two-Volt Josephson Arbitrary Waveform Synthesizer Using Wilkinson Dividers

    No full text

    RUNX2 Transcription Factor Regulates Gene Expression in Luteinizing Granulosa Cells of Rat Ovaries

    No full text
    The LH surge promotes terminal differentiation of follicular cells to become luteal cells. RUNX2 has been shown to play an important role in cell differentiation, but the regulation of Runx2 expression and its function in the ovary remain to be determined. The present study examined 1) the expression profile of Runx2 and its partner CBFÎČ during the periovulatory period, 2) regulatory mechanisms of Runx2 expression, and 3) its potential function in the ovary. Runx2 expression was induced in periovulatory granulosa cells of human and rodent ovaries. RUNX2 and core binding factor-ÎČ (CBFÎČ) proteins in nuclear extracts and RUNX2 binding to a consensus binding sequence increased after human chorionic gonadotropin (hCG) administration. This in vivo up-regulation of Runx2 expression was recapitulated in vitro in preovulatory granulosa cells by stimulation with hCG. The hCG-induced Runx2 expression was reduced by antiprogestin (RU486) and EGF-receptor tyrosine kinase inhibitor (AG1478), indicating the involvement of EGF-signaling and progesterone-mediated pathways. We also found that in the C/EBPÎČ knockout mouse ovary, Runx2 expression was reduced, indicating C/EBPÎČ-mediated expression. Next, the function of RUNX2 was investigated by suppressing Runx2 expression by small interfering RNA in vitro. Runx2 knockdown resulted in reduced levels of mRNA for Rgc32, Ptgds, Fabp6, Mmp13, and Abcb1a genes. Chromatin immunoprecipitation analysis demonstrated the binding of RUNX2 in the promoter region of these genes, suggesting that these genes are direct downstream targets of RUNX2. Collectively, the present data indicate that the LH surge-induced RUNX2 is involved in various aspects of luteal function by directly regulating the expression of diverse luteal genes

    Widespread horse-based mobility arose around 2,200 BCE in Eurasia

    No full text
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordData availability:All collapsed and paired-end sequence data for samples sequenced in this study are available in compressed FASTQ format through the European Nucleotide Archive under accession number PRJEB71445, together with rescaled and trimmed bam sequence alignments against the nuclear horse reference genomes. Previously published ancient data used in this study are available under accession numbers PRJEB7537, PRJEB10098, PRJEB10854, PRJEB22390, PRJEB31613, and PRJEB44430, and detailed in Supplementary Table 1. The genomes of 78 modern horses, publicly available, were also accessed as indicated in their corresponding original publications, and in Supplementary Table 1.Code availability: The software to calculate generation time changes based on the recombination clock is available without restriction on Bitbucket (https://bitbucket.org/plibradosanz/generationtime/src/master/) and Zenodo (10.5281/zenodo.10842666; https://zenodo.org/records/10842666)Horses revolutionized human history with fast mobility. However, the timeline between their domestication and widespread integration as a means of transportation remains contentious. Here we assemble a large collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged ~2,200 BCE (Before Common Era), through close kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than ~2,700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly-held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe ~3,000 BCE and earlier. Finally, we detect significantly shortened generation times at Botai ~3,500 BCE, a settlement from Central Asia associated with corrals and a subsistence economy centered on horses. This supports local horse husbandry before the rise of modern domestic bloodlines.Arts and Humanities Research Council (AHRC
    corecore