3,128 research outputs found

    Statistical characterization of polychromatic absolute and differential squared visibilities obtained from AMBER/VLTI instrument

    Full text link
    In optical interferometry, the visibility squared modulus are generally assumed to follow a Gaussian distribution and to be independent of each other. A quantitative analysis of the relevance of such assumptions is important to help improving the exploitation of existing and upcoming multi-wavelength interferometric instruments. Analyze the statistical behaviour of both the absolute and the colour-differential squared visibilities: distribution laws, correlations and cross-correlations between different baselines. We use observations of stellar calibrators obtained with AMBER instrument on VLTI in different instrumental and observing configurations, from which we extract the frame-by-frame transfer function. Statistical hypotheses tests and diagnostics are then systematically applied. For both absolute and differential squared visibilities and under all instrumental and observing conditions, we find a better fit for the Student distribution than for the Gaussian, log-normal and Cauchy distributions. We find and analyze clear correlation effects caused by atmospheric perturbations. The differential squared visibilities allow to keep a larger fraction of data with respect to selected absolute squared visibilities and thus benefit from reduced temporal dispersion, while their distribution is more clearly characterized. The frame selection based on the criterion of a fixed SNR value might result in either a biased sample of frames or in a too severe selection.Comment: A&A, 13 pages and 9 figure

    PAINTER: a spatio-spectral image reconstruction algorithm for optical interferometry

    Get PDF
    International audienceAstronomical optical interferometers sample the Fourier transform of the intensity distribution of a source at the observation wavelength. Because of rapid perturbations caused by atmospheric turbulence, the phases of the complex Fourier samples (visibilities) cannot be directly exploited. Consequently, specific image reconstruction methods have been devised in the last few decades. Modern polychromatic optical interferometric instruments are now paving the way to multiwave-length imaging. This paper is devoted to the derivation of a spatio-spectral ("3D") image reconstruction algorithm, coined PAINTER (Polychromatic opticAl INTErferometric Reconstruction software). The algorithm relies on an iterative process, which alternates estimation of polychromatic images and of complex visibilities. The complex visibilities are not only estimated from squared moduli and closure phases, but also differential phases, which helps to better constrain the polychromatic reconstruction. Simulations on synthetic data illustrate the efficiency of the algorithm and in particular the relevance of injecting a differential phases model in the reconstruction

    Molecular rheometry: direct determination of viscosity in L-o and L-d lipid phases via fluorescence lifetime imaging

    Get PDF
    Understanding of cellular regulatory pathways that involve lipid membranes requires the detailed knowledge of their physical state and structure. However, mapping the viscosity and diffusion in the membranes of complex composition is currently a non-trivial technical challenge. We report fluorescence lifetime spectroscopy and imaging (FLIM) of a meso-substituted BODIPY molecular rotor localised in the leaflet of model membranes of various lipid compositions. We prepare large and giant unilamellar vesicles (LUVs and GUVs) containing phosphatidylcholine (PC) lipids and demonstrate that recording the fluorescence lifetime of the rotor allows us to directly detect the viscosity of the membrane leaflet and to monitor the influence of cholesterol on membrane viscosity in binary and ternary lipid mixtures. In phase-separated 1,2-dioleoyl-sn-glycero-3-phosphocholine-cholesterol–sphingomyelin GUVs we visualise individual liquid ordered (Lo) and liquid disordered (Ld) domains using FLIM and assign specific microscopic viscosities to each domain. Our study showcases the power of FLIM with molecular rotors to image microviscosity of heterogeneous microenvironments in complex biological systems, including membrane-localised lipid rafts

    A WKB approach to scalar fields dynamics in curved space-time

    Full text link
    Quantum fields exhibit non-trivial behaviours in curved space-times, especially around black holes or when a cosmological constant is added to the field equations. A new scheme, based on the Wentzel-Kramers-Brillouin (WKB) approximation is presented. The main advantage of this method is to allow for a better physical understanding of previously known results and to give good orders of magnitude in situations where no other approaches are currently developed. Greybody factors for evaporating black holes are rederived in this framework and the energy levels of scalar fields in the Anti-de Sitter (AdS) spacetime are accurately obtained. Stationary solutions in the Schwarzschild-Anti-de Sitter (SAdS) background are investigated. Some improvements and the basics of a line of thought for more complex situations are suggested.Comment: Accepted for publication in Nucl. Phys.

    Age-related differences in adaptation during childhood: The influences of muscular power production and segmental energy flow caused by muscles

    Get PDF
    Acquisition of skillfulness is not only characterized by a task-appropriate application of muscular forces but also by the ability to adapt performance to changing task demands. Previous research suggests that there is a different developmental schedule for adaptation at the kinematic compared to the neuro-muscular level. The purpose of this study was to determine how age-related differences in neuro-muscular organization affect the mechanical construction of pedaling at different levels of the task. By quantifying the flow of segmental energy caused by muscles, we determined the muscular synergies that construct the movement outcome across movement speeds. Younger children (5-7 years; n = 11), older children (8-10 years; n = 8), and adults (22-31 years; n = 8) rode a stationary ergometer at five discrete cadences (60, 75, 90, 105, and 120 rpm) at 10% of their individually predicted peak power output. Using a forward dynamics simulation, we determined the muscular contributions to crank power, as well as muscular power delivered to the crank directly and indirectly (through energy absorption and transfer) during the downstroke and the upstroke of the crank cycle. We found significant age Ă— cadence interactions for (1) peak muscular power at the hip joint [Wilks' Lambda = 0.441, F(8,42) = 2.65, p = 0.019] indicating that at high movement speeds children produced less peak power at the hip than adults, (2) muscular power delivered to the crank during the downstroke and the upstroke of the crank cycle [Wilks' Lambda = 0.399, F(8,42) = 3.07, p = 0.009] indicating that children delivered a greater proportion of the power to the crank during the upstroke when compared to adults, (3) hip power contribution to limb power [Wilks' Lambda = 0.454, F(8,42) = 2.54, p = 0.023] indicating a cadence-dependence of age-related differences in the muscular synergy between hip extensors and plantarflexors. The results demonstrate that in spite of a successful performance, children construct the task of pedaling differently when compared to adults, especially when they are pushed to their performance limits. The weaker synergy between hip extensors and plantarflexors suggests that a lack of inter-muscular coordination, rather than muscular power production per se, is a factor that limits children's performance ranges

    Single NanoParticle Photothermal Tracking (SNaPT) of 5 nm gold beads in live cells

    Full text link
    Tracking individual nano-objets in live cells during arbitrary long times is an ubiquitous need in modern biology. We present here a method for tracking individual 5 nm gold nanoparticles on live cells. It relies on the photothermal effect and the detection of the Laser Induced Scattering around a NanoAbsorber (LISNA). The key point for recording trajectories at video rate is the use of a triangulation procedure. The effectiveness of the method is tested against Single fluorescent Molecule Tracking in live COS7 cells on subsecond time scales. We further demonstrate recordings for several minutes of AMPA receptors trajectories on the plasma membrane of live neurons. SNaPT has the unique potential to record arbitrary long trajectory of membrane proteins using non-fluorescent nanometer sized labels

    A note on quasinormal modes: A tale of two treatments

    Full text link
    There is an apparent discrepancy in the literature with regard to the quasinormal mode frequencies of Schwarzschild-de Sitter black holes in the degenerate-horizon limit. On the one hand, a Poschl-Teller-inspired method predicts that the real part of the frequencies will depend strongly on the orbital angular momentum of the perturbation field whereas, on the other hand, the degenerate limit of a monodromy-based calculation suggests there should be no such dependence (at least, for the highly damped modes). In the current paper, we provide a possible resolution by critically re-assessing the limiting procedure used in the monodromy analysis.Comment: 11 pages, Revtex format; (v2) new addendum in response to reader comments, also references, footnote and acknowledgments adde

    Euclidean Supergravity in Terms of Dirac Eigenvalues

    Get PDF
    It has been recently shown that the eigenvalues of the Dirac operator can be considered as dynamical variables of Euclidean gravity. The purpose of this paper is to explore the possiblity that the eigenvalues of the Dirac operator might play the same role in the case of supergravity. It is shown that for this purpose some primary constraints on covariant phase space as well as secondary constraints on the eigenspinors must be imposed. The validity of primary constraints under covariant transport is further analyzed. It is show that in the this case restrictions on the tanget bundle and on the spinor bundle of spacetime arise. The form of these restrictions is determined under some simplifying assumptions. It is also shown that manifolds with flat curvature of tangent bundle and spinor bundle and spinor bundle satisfy these restrictons and thus they support the Dirac eigenvalues as global observables.Comment: Misprints and formulae corrected; to appear in Phys. Rev.

    Teachers as writers: a systematic review

    Get PDF
    This paper is a critical literature review of empirical work from 1990-2015 on teachers as writers. It interrogates the evidence on teachers’ attitudes to writing, their sense of themselves as writers and the potential impact of teacher writing on pedagogy or student outcomes in writing. The methodology was carried out in four stages. Firstly, educational databases keyword searches located 438 papers. Secondly, initial screening identified 159 for further scrutiny, 43 of which were found to specifically address teachers’ writing identities and practices. Thirdly, these sources were screened further using inclusion/exclusion criteria. Fourthly, the 22 papers judged to satisfy the criteria were subject to in-depth analysis and synthesis. The findings reveal that the evidence base in relation to teachers as writers is not strong, particularly with regard to the impact of teachers’ writing on student outcomes. The review indicates that teachers have narrow conceptions of what counts as writing and being a writer and that multiple tensions exist, relating to low self-confidence, negative writing histories, and the challenge of composing and enacting teacher and writer positions in school. However, initial training and professional development programmes do appear to afford opportunities for reformulation of attitudes and sense of self as writer

    The contribution of Swiss scientists to the assessment of energy metabolism

    Get PDF
    Although Switzerland is considered a small country, it has its share in discoveries, inventions and developments for the assessment of energy metabolism. This includes seminal contributions to respiratory and metabolic physiology and to devices for measuring energy expenditure by direct and indirect calorimetry in vivo in humans and small animals (as well as in vitro in organs/tissues), for the purpose of evaluating the basic nutritional requirements. A strong momentum came during World War II when it was necessary to evaluate the energy requirements of soldiers protecting the country by assessing their energy expenditure, as well as to determine the nutritional needs of the Swiss civil population in time of war when food rationing was necessary to ensure national neutrality and independence. A further impetus came in the 1970s at the start of the obesity epidemics, toward a better understanding of the metabolic basis of obesity, ranging from the development of whole-body concepts to molecular mechanisms. In a trip down memory lane, this review focuses on some of the earlier leading Swiss scientists who have contributed to a better understanding of the field
    • …
    corecore