199 research outputs found

    Quantum Mechanics on Manifolds Embedded in Euclidean Space

    Get PDF
    Quantum particles confined to surfaces in higher dimensional spaces are acted upon by forces that exist only as a result of the surface geometry and the quantum mechanical nature of the system. The dynamics are particularly rich when confinement is implemented by forces that act normal to the surface. We review this confining potential formalism applied to the confinement of a particle to an arbitrary manifold embedded in a higher dimensional Euclidean space. We devote special attention to the geometrically induced gauge potential that appears in the effective Hamiltonian for motion on the surface. We emphasize that the gauge potential is only present when the space of states describing the degrees of freedom normal to the surface is degenerate. We also distinguish between the effects of the intrinsic and extrinsic geometry on the effective Hamiltonian and provide simple expressions for the induced scalar potential. We discuss examples including the case of a 3-dimensional manifold embedded in a 5-dimensional Euclidean space.Comment: 12 pages, LaTe

    Genome And Secretome Analysis Of The Hemibiotrophic Fungal Pathogen, Moniliophthora Roreri, Which Causes Frosty Pod Rot Disease Of Cacao: Mechanisms Of The Biotrophic And Necrotrophic Phases

    Get PDF
    Background: The basidiomycete Moniliophthora roreri is the causal agent of Frosty pod rot (FPR) disease of cacao (Theobroma cacao), the source of chocolate, and FPR is one of the most destructive diseases of this important perennial crop in the Americas. This hemibiotroph infects only cacao pods and has an extended biotrophic phase lasting up to sixty days, culminating in plant necrosis and sporulation of the fungus without the formation of a basidiocarp.Results: We sequenced and assembled 52.3 Mb into 3,298 contigs that represent the M. roreri genome. Of the 17,920 predicted open reading frames (OFRs), 13,760 were validated by RNA-Seq. Using read count data from RNA sequencing of cacao pods at 30 and 60 days post infection, differential gene expression was estimated for the biotrophic and necrotrophic phases of this plant-pathogen interaction. The sequencing data were used to develop a genome based secretome for the infected pods. Of the 1,535 genes encoding putative secreted proteins, 1,355 were expressed in the biotrophic and necrotrophic phases. Analysis of the data revealed secretome gene expression that correlated with infection and intercellular growth in the biotrophic phase and invasive growth and plant cellular death in the necrotrophic phase.Conclusions: Genome sequencing and RNA-Seq was used to determine and validate the Moniliophthora roreri genome and secretome. High sequence identity between Moniliophthora roreri genes and Moniliophthora perniciosa genes supports the taxonomic relationship with Moniliophthora perniciosa and the relatedness of this fungus to other basidiomycetes. Analysis of RNA-Seq data from infected plant tissues revealed differentially expressed genes in the biotrophic and necrotrophic phases. The secreted protein genes that were upregulated in the biotrophic phase are primarily associated with breakdown of the intercellular matrix and modification of the fungal mycelia, possibly to mask the fungus from plant defenses. Based on the transcriptome data, the upregulated secreted proteins in the necrotrophic phase are hypothesized to be actively attacking the plant cell walls and plant cellular components resulting in necrosis. These genes are being used to develop a new understanding of how this disease interaction progresses and to identify potential targets to reduce the impact of this devastating disease. © 2014 Meinhardt et al.; licensee BioMed Central Ltd.151USDA; U.S. Department of AgricultureLatunde-Dada, A.O., Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout (2001) Mol Plant Pathol, 2 (4), pp. 187-198. , 10.1046/j.1464-6722.2001.00069.x, 20573006Oliver, R.P., Ipcho, S.V.S., Arabidopsis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens (2004) Mol Plant Pathol, 5 (4), pp. 347-352. , 10.1111/j.1364-3703.2004.00228.x, 20565602Catanzariti, A.M., Dodds, P.N., Lawrence, G.J., Ayliffe, M.A., Ellis, J.G., Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors (2006) Plant Cell, 18 (1), pp. 243-256. , 10.1105/tpc.105.035980, 1323496, 16326930Link, T.I., Voegele, R.T., Secreted proteins of Uromyces fabae: similarities and stage specificity (2008) Mol Plant Pathol, 9 (1), pp. 59-66Brown, N.A., Antoniw, J., Hammond-Kosack, K.E., The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis (2012) Plos One, 7 (4), pp. e33731. , 10.1371/journal.pone.0033731, 3320895, 22493673Thomma, B.P., Alternaria spp.: from general saprophyte to specific parasite (2003) Mol Plant Pathol, 4 (4), pp. 225-236. , 10.1046/j.1364-3703.2003.00173.x, 20569383Evans, H.C., Stalpers, J.A., Samson, R.A., Benny, G.L., Taxonomy of Monilia-Roreri, an important pathogen of theobroma-cacao in South-America (1978) Can J Bot, 56 (20), pp. 2528-2532Aime, M.C., Phillips-Mora, W., The causal agents of witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97 (5), pp. 1012-1022. , 10.3852/mycologia.97.5.1012, 16596953Phillips-Mora, W., Wilkinson, M.J., Frosty pod of cacao: a disease with a limited geographic range but unlimited potential for damage (2007) Phytopathology, 97 (12), pp. 1644-1647. , 10.1094/PHYTO-97-12-1644, 18943726Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D.P., Pereira, G.A.G., Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: what's new from this old foe? (2008) Mol Plant Pathol, 9 (5), pp. 577-588. , 10.1111/j.1364-3703.2008.00496.x, 19018989Ferreira, L.F.R., Duarte, K.M.R., Gomes, L.H., Carvalho, R.S., Leal, G.A., Aguiar, M.M., Armas, R.D., Tavares, F.C.A., Genetic diversity of polysporic isolates of Moniliophthora perniciosa (Tricholomataceae) (2012) Genet Mol Res, 11 (3), pp. 2559-2568. , 10.4238/2012.July.10.11, 22869076Phillips-Mora, W., Wilkinson, M.J., Frosty pod: a disease of limited geographic distribution but unlimited potential for damage (2006) Phytopathology, 96 (6), pp. S138-S138Evans, H.C., (1981) Pod Rot of Cacao caused by Moniliophthora (Monilia) roreri, , London: Commonwealth Agricultural Bureau, 24Joosten, M., de Wit, P., THE TOMATO-CLADOSPORIUM FULVUM INTERACTION: a versatile experimental system to study plant-pathogen interactions (1999) Annu Rev Phytopathol, 37, pp. 335-367. , 10.1146/annurev.phyto.37.1.335, 11701827Perfect, S.E., Green, J.R., Infection structures of biotrophic and hemibiotrophic fungal plant pathogens (2001) Mol Plant Pathol, 2 (2), pp. 101-108. , 10.1046/j.1364-3703.2001.00055.x, 20572997Scarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W.V., Schiavinato, M.A., Cascardo, J.C.M., Pereira, G.A.G., Biochemical changes during the development of witches' broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) J Exp Bot, 56 (413), pp. 865-877. , 10.1093/jxb/eri079, 15642708Melnick, R.L., Marelli, J., Bailey, B.A., The molecular interaction of Theobroma cacao and Moniliophthora perniciosa, causal agent of witches' broom, during infection of young pods (2011) Phytopathology, 101 (6), pp. S274-S274Melnick, R.L., Marelli, J.P., Sicher, R.C., Strem, M.D., Bailey, B.A., The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches' broom disease, during parthenocarpy (2012) Tree Genet Genomes, 8 (6), pp. 1261-1279Thomazella, D.P., Teixeira, P.J., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012) New Phytol, 194 (4), pp. 1025-1034. , 10.1111/j.1469-8137.2012.04119.x, 3415677, 22443281Mondego, J.M., Carazzolle, M.F., Costa, G.G., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Pereira, G.A.G., A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom disease of cacao (2008) Bmc Genomics, 9, p. 548. , 10.1186/1471-2164-9-548, 2644716, 19019209Bailey, B.A., Crozier, J., Sicher, R.C., Strem, M.D., Melnick, R., Carazzolle, M.F., Costa, G.G.L., Meinhardt, L., Dynamic changes in pod and fungal physiology associated with the shift from biotrophy to necrotrophy during the infection of Theobroma cacao by Moniliophthora roreri (2013) Physiol Mol Plant P, 81, pp. 84-96Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities (1991) Biochem J, 280 (PART 2), pp. 309-316. , 1130547, 1747104Dias, F.M., Vincent, F., Pell, G., Prates, J.A., Centeno, M.S., Tailford, L.E., Ferreira, L.M., Gilbert, H.J., Insights into the molecular determinants of substrate specificity in glycoside hydrolase family 5 revealed by the crystal structure and kinetics of Cellvibrio mixtus mannosidase 5A (2004) J Biol Chem, 279 (24), pp. 25517-25526. , 10.1074/jbc.M401647200, 15014076Fibriansah, G., Masuda, S., Koizumi, N., Nakamura, S., Kumasaka, T., The 1.3 A crystal structure of a novel endo-beta-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96 (2007) Proteins, 69 (3), pp. 683-690. , 10.1002/prot.21589, 17879342Markovic, O., Janecek, S., Pectin degrading glycoside hydrolases of family 28: sequence-structural features, specificities and evolution (2001) Protein Eng, 14 (9), pp. 615-631. , 10.1093/protein/14.9.615, 11707607Vandermarliere, E., Bourgois, T.M., Winn, M.D., van Campenhout, S., Volckaert, G., Delcour, J.A., Strelkov, S.V., Courtin, C.M., Structural analysis of a glycoside hydrolase family 43 arabinoxylan arabinofuranohydrolase in complex with xylotetraose reveals a different binding mechanism compared with other members of the same family (2009) Biochem J, 418 (1), pp. 39-47. , 10.1042/BJ20081256, 18980579Tiels, P., Baranova, E., Piens, K., De Visscher, C., Pynaert, G., Nerinckx, W., Stout, J., Callewaert, N., A bacterial glycosidase enables mannose-6-phosphate modification and improved cellular uptake of yeast-produced recombinant human lysosomal enzymes (2012) Nat Biotechnol, 30 (12), pp. 1225-1231. , 10.1038/nbt.2427, 23159880Ferreira, P., Hernandez-Ortega, A., Herguedas, B., Martinez, A.T., Medina, M., Aryl-alcohol oxidase involved in lignin degradation: a mechanistic study based on steady and pre-steady state kinetics and primary and solvent isotope effects with two alcohol substrates (2009) J Biol Chem, 284 (37), pp. 24840-24847. , 10.1074/jbc.M109.011593, 2757187, 19574215Mayer, A.M., Staples, R.C., Laccase: new functions for an old enzyme (2002) Phytochemistry, 60 (6), pp. 551-565. , 10.1016/S0031-9422(02)00171-1, 12126701Kersten, P.J., Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase (1990) Proc Natl Acad Sci U S A, 87 (8), pp. 2936-2940. , 10.1073/pnas.87.8.2936, 53808, 11607073Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J.P., Davies, G., Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases (1995) Proc Natl Acad Sci U S A, 92 (15), pp. 7090-7094. , 10.1073/pnas.92.15.7090, 41477, 7624375Wostemeyer, J., Kreibich, A., Repetitive DNA elements in fungi (Mycota): impact on genomic architecture and evolution (2002) Curr Genet, 41 (4), pp. 189-198. , 10.1007/s00294-002-0306-y, 12172959Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Oliver, S.G., Life with 6000 genes (1996) Science, 274 (5287), pp. 546-563. , 547, 10.1126/science.274.5287.546, 8849441Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Nicol, R., The genome sequence of the rice blast fungus Magnaporthe grisea (2005) Nature, 434 (7036), pp. 980-986. , 10.1038/nature03449, 15846337Labbe, J., Murat, C., Morin, E., Tuskan, G.A., Le Tacon, F., Martin, F., Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor (2012) Plos One, 7 (8), pp. e40197. , 10.1371/journal.pone.0040197, 3411680, 22870194Adomako, D., Cocoa pod husk pectin (1972) Phytochemistry, 11 (3), p. 1145Gan, P., Ikeda, K., Irieda, H., Narusaka, M., O'Connell, R.J., Narusaka, Y., Takano, Y., Shirasu, K., Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi (2013) New Phytol, 197 (4), pp. 1236-1249. , 10.1111/nph.12085, 23252678Garcia, O., Macedo, J.A.N., Tiburcio, R., Zaparoli, G., Rincones, J., Bittencourt, L.M.C., Ceita, G.O., Cascardo, J.C., Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao (2007) Mycol Res, 111, pp. 443-455. , 10.1016/j.mycres.2007.01.017, 17512713Pemberton, C.L., Salmond, G.P., The Nep1-like proteins-a growing family of microbial elicitors of plant necrosis (2004) Mol Plant Pathol, 5 (4), pp. 353-359. , 10.1111/j.1364-3703.2004.00235.x, 20565603Zaparoli, G., Barsottini, M.R., de Oliveira, J.F., Dyszy, F., Teixeira, P.J., Barau, J.G., Garcia, O., Dias, S.M., The crystal structure of necrosis-and ethylene-inducing protein 2 from the causal agent of cacao's Witches' Broom disease reveals key elements for its activity (2011) Biochemistry-Us, 50 (45), pp. 9901-9910Cabral, A., Oome, S., Sander, N., Kufner, I., Nurnberger, T., Van den Ackerveken, G., Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region (2012) Mol Plant Microbe Interact, 25 (5), pp. 697-708. , 10.1094/MPMI-10-11-0269, 22235872Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S., Valent, B., Interaction transcriptome analysis identifies magnaporthe oryzae BAS1-4 as Biotrophy-associated secreted proteins in rice blast disease (2009) Plant Cell, 21 (4), pp. 1273-1290. , 10.1105/tpc.107.055228, 2685627, 19357089Paper, J.M., Scott-Craig, J.S., Adhikari, N.D., Cuomo, C.A., Walton, J.D., Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum (2007) Proteomics, 7 (17), pp. 3171-3183. , 10.1002/pmic.200700184, 17676664van den Burg, H.A., Harrison, S.J., Joosten, M.H., Vervoort, J., de Wit, P.J., Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection (2006) Mol Plant Microbe Interact, 19 (12), pp. 1420-1430. , 10.1094/MPMI-19-1420, 17153926Roby, D., Gadelle, A., Toppan, A., Chitin oligosaccharides as elicitors of chitinase activity in melon plants (1987) Biochem Biophys Res Commun, 143 (3), pp. 885-892. , 10.1016/0006-291X(87)90332-9, 3566760Deising, H., Siegrist, J., Chitin deacetylase activity of the rust uromyces-viciae-fabae is controlled by fungal morphogenesis (1995) Fems Microbiol Lett, 127 (3), pp. 207-211Teixeira, P.J.P.L., Thomazella, D.P.T., Vidal, R.O., Do Prado, P.F.V., Reis, O., Baroni, R.M., Franco, S.F., Mondego, J.M.C., The fungal pathogen moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao (2012) Plos One, 7 (9)Riviere, M.P., Marais, A., Ponchet, M., Willats, W., Galiana, E., Silencing of acidic pathogenesis-related PR-1 genes increases extracellular beta-(1→ 3)-glucanase activity at the onset of tobacco defence reactions (2008) J Exp Bot, 59 (6), pp. 1225-1239. , 10.1093/jxb/ern044, 18390849Levy, A., Guenoune-Gelbart, D., Epel, B.L., Beta-1,3-Glucanases: plasmodesmal gate keepers for intercellular communication (2007) Plant Signal Behav, 2 (5), pp. 404-407. , 10.4161/psb.2.5.4334, 2634228, 19704615Prados-Rosales, R.C., Roldan-Rodriguez, R., Serena, C., Lopez-Berges, M.S., Guarro, J., Martinez-del-Pozo, A., Di Pietro, A., A PR-1-like protein of fusarium oxysporum functions in virulence on mammalian hosts (2012) J Biol Chem, 287 (26), pp. 21970-21979. , 10.1074/jbc.M112.364034, 3381157, 22553200Kershaw, M.J., Talbot, N.J., Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis (1998) Fungal Genet Biol, 23 (1), pp. 18-33. , 10.1006/fgbi.1997.1022, 9501475Zelena, K., Takenberg, M., Lunkenbein, S., Woche, S.K., Nimtz, M., Berger, R.G., PfaH2: a novel hydrophobin from the ascomycete Paecilomyces farinosus (2013) Biotechnol Appl Biochem, 60 (2), pp. 147-154. , 10.1002/bab.1077, 23600571Wosten, H.A., Hydrophobins: multipurpose proteins (2001) Annu Rev Microbiol, 55, pp. 625-646. , 10.1146/annurev.micro.55.1.625, 11544369Bayry, J., Aimanianda, V., Guijarro, J.I., Sunde, M., Latge, J.P., Hydrophobins-unique fungal proteins (2012) PLoS Pathog, 8 (5), pp. e1002700. , 10.1371/journal.ppat.1002700, 3364958, 22693445De Oliveira, A.L., Gallo, M., Pazzagli, L., Benedetti, C.E., Cappugi, G., Scala, A., Pantera, B., Cicero, D.O., The structure of the elicitor cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double psi beta-barrel fold and carbohydrate binding (2011) J Biol Chem, 286 (20), pp. 17560-17568. , 10.1074/jbc.M111.223644, 3093830, 21454637Baccelli, I., Comparini, C., Bettini, P.P., Martellini, F., Ruocco, M., Pazzagli, L., Bernardi, R., Scala, A., The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani (2012) Fems Microbiol Lett, 327 (2), pp. 155-163. , 10.1111/j.1574-6968.2011.02475.x, 22136757Zaparoli, G., Cabrera, O.G., Medrano, F.J., Tiburcio, R., Lacerda, G., Pereira, G.G., Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, encoding necrosis-inducing proteins similar to cerato-platanins (2009) Mycol Res, 113, pp. 61-72. , 10.1016/j.mycres.2008.08.004, 18796332Lombardi, L., Faoro, F., Luti, S., Baccelli, I., Martellini, F., Bernardi, R., Picciarelli, P., Pazzagli, L., Differential timing of defense-related responses induced by cerato-platanin and cerato-populin, two non-catalytic fungal elicitors (2013) Physiol Plant, 149, pp. 408-421Yang, Y., Zhang, H., Li, G., Li, W., Wang, X., Song, F., Ectopic expression of MgSM1, a Cerato-platanin family protein from Magnaporthe grisea, confers broad-spectrum disease resistance in Arabidopsis (2009) Plant Biotechnol J, 7 (8), pp. 763-777. , 10.1111/j.1467-7652.2009.00442.x, 19754836Bhadauria, V., Banniza, S., Vandenberg, A., Selvaraj, G., Wei, Y., EST mining identifies proteins putatively secreted by the anthracnose pathogen Colletotrichum truncatum (2011) Bmc Genomics, 12, p. 327. , 10.1186/1471-2164-12-327, 3149586, 21699715Frischmann, A., Neudl, S., Gaderer, R., Bonazza, K., Zach, S., Gruber, S., Spadiut, O., Seidl-Seiboth, V., Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus trichoderma atroviride (2013) J Biol Chem, 288 (6), pp. 4278-4287. , 10.1074/jbc.M112.427633, 3567679, 23250741Jeong, J.S., Mitchell, T.K., Dean, R.A., The magnaporthe grisea snodprot1 homolog, MSP1, is required for virulence (2007) Fems Microbiol Lett, 273 (2), pp. 157-165. , 10.1111/j.1574-6968.2007.00796.x, 17590228Peter, M., Courty, P.E., Kohler, A., Delaruelle, C., Martin, D., Tagu, D., Frey-Klett, P., Martin, F., Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus (2003) New Phytol, 159 (1), pp. 117-129Cosgrove, D.J., Loosening of plant cell walls by expansins (2000) Nature, 407 (6802), pp. 321-326. , 10.1038/35030000, 11014181Quiroz-Castaneda, R.E., Martinez-Anaya, C., Cuervo-Soto, L.I., Segovia, L., Folch-Mallol, J.L., Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta (2011) Microb Cell Fact, 10, p. 8. , 10.1186/1475-2859-10-8, 3050684, 21314954Brotman, Y., Briff, E., Viterbo, A., Chet, I., Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization (2008) Plant Physiol, 147 (2), pp. 779-789. , 10.1104/pp.108.116293, 2409044, 18400936Yamada, M., Sakuraba, S., Shibata, K., Taguchi, G., Inatomi, S., Okazaki, M., Shimosaka, M., Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display (2006) Fems Microbiol Lett, 254 (1), pp. 165-172. , 10.1111/j.1574-6968.2005.00023.x, 16451195Rincones, J., Scarpari, L.M., Carazzolle, M.F., Mondego, J.M.C., Formighieri, E.F., Barau, J.G., Costa, G.G.L., Pereira, G.A., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches' broom pathogen Moniliophthora perniciosa (2008) Mol Plant Microbe In, 21 (7), pp. 891-908Zerbino, D.R., Birney, E., Velvet: algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res, 18 (5), pp. 821-829. , 10.1101/gr.074492.107, 2336801, 18349386Sommer, D.D., Delcher, A.L., Salzberg, S.L., Pop, M., Minimus: a fast, lightweight genome assembler (2007) BMC Bioinforma, 8, p. 64Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y.O., Borodovsky, M., Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training (2008) Genome Res, 18 (12), pp. 1979-1990. , 10.1101/gr.081612.108, 2593577, 18757608Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., Morgenstern, B., AUGUSTUS: ab initio prediction of alternative transcripts (2006) Nucleic Acids Res, 34, pp. W435-W439. , Web Server issue, 1538822, 16845043Stanke, M., Tzvetkova, A., Morgenstern, B., AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome (2006) Genome Biol, 7 (SUPPL. 1), pp. S11 11-18Slater, G.S., Birney, E., Automated generation of heuristics for biological sequence comparison (2005) BMC Bioinforma, 6, p. 31Borodovsky, M., Lomsadze, A., Ivanov, N., Mills, R., Eukaryotic gene prediction using GeneMark.hmm (2003) Curr Protoc Bioinformatics, , Chapter 4, Unit4 6Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Wortman, J.R., Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments (2008) Genome Biol, 9 (1), pp. R7. , 10.1186/gb-2008-9-1-r7, 2395244, 18190707Koski, L.B., Gray, M.W., Lang, B.F., Burger, G., AutoFACT: an automatic functional annotation and classification tool (2005) BMC Bioinforma, 6, p. 151Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., Wu, C.H., UniRef: comprehensive and non-redundant UniProt reference clusters (2007) Bioinformatics, 23 (10), pp. 1282-1288. , 10.1093/bioinformatics/btm098, 17379688Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Sonnhammer, E.L., The Pfam protein families database (2002) Nucleic Acids Res, 30 (1), pp. 276-280. , 10.1093/nar/30.1.276, 99071,

    Computational Methods for Stability and Control (COMSAC): The Time Has Come

    Get PDF
    Powerful computational fluid dynamics (CFD) tools have emerged that appear to offer significant benefits as an adjunct to the experimental methods used by the stability and control community to predict aerodynamic parameters. The decreasing costs for and increasing availability of computing hours are making these applications increasingly viable as time goes on and the cost of computing continues to drop. This paper summarizes the efforts of four organizations to utilize high-end computational fluid dynamics (CFD) tools to address the challenges of the stability and control arena. General motivation and the backdrop for these efforts will be summarized as well as examples of current applications

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure

    Measurement of the Bottom contribution to non-photonic electron production in p+pp+p collisions at s\sqrt{s} =200 GeV

    Get PDF
    The contribution of BB meson decays to non-photonic electrons, which are mainly produced by the semi-leptonic decays of heavy flavor mesons, in p+pp+p collisions at s=\sqrt{s} = 200 GeV has been measured using azimuthal correlations between non-photonic electrons and hadrons. The extracted BB decay contribution is approximately 50% at a transverse momentum of pT5p_{T} \geq 5 GeV/cc. These measurements constrain the nuclear modification factor for electrons from BB and DD meson decays. The result indicates that BB meson production in heavy ion collisions is also suppressed at high pTp_{T}.Comment: 6 pages, 4 figures, accepted by PR

    Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea)

    Get PDF
    International audienceRates of biodiversity loss are higher in freshwater ecosystems than in most terrestrial or marine ecosystems, making freshwater conservation a priority. However, prioritization methods are impeded by insufficient knowledge on the distribution and conservation status of freshwater taxa, particularly invertebrates. We evaluated the extinction risk of the world's 590 freshwater crayfish species using the IUCN Categories and Criteria and found 32% of all species are threatened with extinction. The level of extinction risk differed between families, with proportionally more threatened species in the Parastacidae and Astacidae than in the Cambaridae. Four described species were Extinct and 21% were assessed as Data Deficient. There was geographical variation in the dominant threats affecting the main centres of crayfish diversity. The majority of threatened US and Mexican species face threats associated with urban development, pollution, damming and water management. Conversely, the majority of Australian threatened species are affected by climate change, harvesting, agriculture and invasive species. Only a small proportion of crayfish are found within the boundaries of protected areas, suggesting that alternative means of long-term protection will be required. Our study highlights many of the significant challenges yet to come for freshwater biodiversity unless conservation planning shifts from a reactive to proactive approach
    corecore