6,461 research outputs found

    Overall determination of the CKM matrix

    Get PDF
    We discuss the problem of theoretical uncertainties in the combination of observables related to the CKM matrix elements and propose a statistically sensible method for combining them. The overall fit is performed on present data, and constraints on the matrix elements are presented as well as on fB*sqrt(Bb). We then explore the implications of recent measurements and developments: jpsi-KS CP asymmetry, epsilon_prime/epsilon and B -> K pi branching fractions. Finally, we extract from the overall fit the Standard Model expectations for the rare kaon decays K -> pi nu anti-nu.Comment: Talk given at Heavy Flavours 8, Southampton, UK, 199

    Search for new physics at LHCb: rare decays of B hadrons and CP violation in the charm sector

    No full text
    PoS(EPS-HEP 2009) 186 - On behalf of the LHCb collaborationInternational audienceLHCb is an heavy flavour precision experiment with LHC at CERN. It will search for New Physics in CP violation and rare decays in the heavy quarks sector. The experiment is ready to take data for the soon expected start-up of the LHC. An overview of its physics program in both the rare decays of B hadrons and CP violation in the charm sectors is given, illustrated by few key examples: measurements of the \bstomumu\ and \btokstmumu\ decay modes, study of the photon helicity using the \bstophig\ and \btokstee\ decay modes, as well as search for CP violation using D^0 meson

    Renormalization of heavy-light currents in moving NRQCD

    Full text link
    Heavy-light decays such as B→πℓνB \to \pi \ell \nu, B→K∗γB \to K^{*} \gamma and B→K(∗)ℓℓB \to K^{(*)} \ell \ell can be used to constrain the parameters of the Standard Model and in indirect searches for new physics. While the precision of experimental results has improved over the last years this has still to be matched by equally precise theoretical predictions. The calculation of heavy-light form factors is currently carried out in lattice QCD. Due to its small Compton wavelength we discretize the heavy quark in an effective non-relativistic theory. By formulating the theory in a moving frame of reference discretization errors in the final state are reduced at large recoil. Over the last years the formalism has been improved and tested extensively. Systematic uncertainties are reduced by renormalizing the m(oving)NRQCD action and heavy-light decay operators. The theory differs from QCD only for large loop momenta at the order of the lattice cutoff and the calculation can be carried out in perturbation theory as an expansion in the strong coupling constant. In this paper we calculate the one loop corrections to the heavy-light vector and tensor operator. Due to the complexity of the action the generation of lattice Feynman rules is automated and loop integrals are solved by the adaptive Monte Carlo integrator VEGAS. We discuss the infrared and ultraviolet divergences in the loop integrals both in the continuum and on the lattice. The light quarks are discretized in the ASQTad and highly improved staggered quark (HISQ) action; the formalism is easily extended to other quark actions.Comment: 24 pages, 11 figures. Published in Phys. Rev. D. Corrected a typo in eqn. (51

    Cross Sections for the Reactions e+e- --> K+ K- pi+pi-, K+ K- pi0pi0, and K+ K- K+ K- Measured Using Initial-State Radiation Events

    Get PDF
    We study the processes e+e- --> K+ K- pi+pi-gamma, K+ K- pi0pi0gamma, and K+ K- K+ K-gamma, where the photon is radiated from the initial state. About 84000, 8000, and 4200 fully reconstructed events, respectively, are selected from 454 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the \epem center-of-mass energy, so that the K+ K- pi+pi- data can be compared with direct measurements of the e+e- --> K+ K- pi+pi- reaction. No direct measurements exist for the e+e- --> K+ K-pi0pi0 or e+e- --> K+ K-K+ K- reactions, and we present an update of our previous result with doubled statistics. Studying the structure of these events, we find contributions from a number of intermediate states, and extract their cross sections. In particular, we perform a more detailed study of the e+e- --> phi(1020)pipigamma reaction, and confirm the presence of the Y(2175) resonance in the phi(1020) f0(980) and K+K-f0(980) modes. In the charmonium region, we observe the J/psi in all three final states and in several intermediate states, as well as the psi(2S) in some modes, and measure the corresponding product of branching fraction and electron width.Comment: 35 pages, 42 figure

    Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons

    Get PDF
    We present improved measurements of CP-violation parameters in the decays B0→π+π−B^0 \to \pi^+ \pi^-, B0→K+π−B^0 \to K^+ \pi^-, and B0→π0π0B^0 \to \pi^0 \pi^0, and of the branching fractions for B0→π0π0B^0 \to \pi^0 \pi^0 and B0→K0π0B^0 \to K^0 \pi^0. The results are obtained with the full data set collected at the Υ(4S)\Upsilon(4S) resonance by the BABAR experiment at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory, corresponding to 467±5467 \pm 5 million BBˉB\bar B pairs. We find the CP-violation parameter values and branching fractions Sπ+π−=−0.68±0.10±0.03,Cπ+π−=−0.25±0.08±0.02,AK−π+=−0.107±0.016−0.004+0.006,Cπ0π0=−0.43±0.26±0.05,Br(B0→π0π0)=(1.83±0.21±0.13)×10−6,Br(B0→K0π0)=(10.1±0.6±0.4)×10−6, S_{\pi^+\pi^-} = -0.68 \pm 0.10 \pm 0.03, C_{\pi^+\pi^-} = -0.25 \pm 0.08 \pm 0.02, A_{K^-\pi^+} = -0.107 \pm 0.016 ^{+0.006}_{-0.004}, C_{\pi^0\pi^0} = -0.43 \pm 0.26 \pm 0.05, Br(B^0 \to \pi^0 \pi^0) = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}, Br(B^0 \to K^0 \pi^0) = (10.1 \pm 0.6 \pm 0.4) \times 10^{-6}, where in each case, the first uncertainties are statistical and the second are systematic. We observe CP violation with a significance of 6.7 standard deviations for B0→π+π−B^0 \to\pi^+\pi^- and 6.1 standard deviations for B0→K+π−B^0 \to K^+ \pi^-, including systematic uncertainties. Constraints on the Unitarity Triangle angle α\alpha are determined from the isospin relations among the B→ππB \to \pi\pi rates and asymmetries. Considering only the solution preferred by the Standard Model, we find α\alpha to be in the range [71∘,109∘][71^\circ,109^\circ] at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.

    Evidence for the η_b(1S) Meson in Radiative Υ(2S) Decay

    Get PDF
    We have performed a search for the η_b(1S) meson in the radiative decay of the Υ(2S) resonance using a sample of 91.6 × 10^6 Υ(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_γ = 609.3^(+4.6)_(-4.5)(stat)±1.9(syst) MeV, corresponding to an η_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) ± 2.0(syst) MeV/c^2. The branching fraction for the decay Υ(2S) → γη_b(1S) is determined to be [3.9 ± 1.1(stat)^(+1.1)_(-0.9)(syst)] × 10^(-4). We find the ratio of branching fractions B[Υ(2S) → γη_b(1S)]/B[Υ(3S) → γη_b(1S)]= 0.82 ± 0.24(stat)^(+0.20)_(-0.19)(syst)
    • …
    corecore