226 research outputs found

    Novel Insights Into N-Glycan Fucosylation and Core Xylosylation in C. reinhardtii

    Get PDF
    Chlamydomonas reinhardtii (C. reinhardtii) N-glycans carry plant typical beta 1,2-core xylose, alpha 1,3-fucose residues, as well as plant atypical terminal beta 1,4-xylose and methylated mannoses. In a recent study, XylT1A was shown to act as core xylosyltransferase, whereby its action was of importance for an inhibition of excessive Man1A dependent trimming. N-Glycans found in a XylT1A/Man1A double mutant carried core xylose residues, suggesting the existence of a second core xylosyltransferase in C. reinhardtii. To further elucidate enzymes important for N-glycosylation, novel single knockdown mutants of candidate genes involved in the N-glycosylation pathway were characterized. In addition, double, triple, and quadruple mutants affecting already known N-glycosylation pathway genes were generated. By characterizing N-glycan compositions of intact N-glycopeptides from these mutant strains by mass spectrometry, a candidate gene encoding for a second putative core xylosyltransferase (XylT1B) was identified. Additionally, the role of a putative fucosyltransferase was revealed. Mutant strains with knockdown of both xylosyltransferases and the fucosyltransferase resulted in the formation of N-glycans with strongly diminished core modifications. Thus, the mutant strains generated will pave the way for further investigations on how single N-glycan core epitopes modulate protein function in C. reinhardtii

    The endothelin antagonist BQ123 reduces pulmonary vascular resistance after surgical intervention for congenital heart disease

    Get PDF
    AbstractObjective: Postoperative pulmonary hypertension in children after surgical intervention for congenital heart disease has been attributed to failure of the pulmonary endothelium to provide adequate vasodilation. Although we have shown that the impaired vasodilatory component attributable to the l-arginine-nitric oxide pathway is almost completely reversible, a nonrestorable component persists, implying an additional vasoconstrictive mechanism in postoperative pulmonary endothelial dysfunction. In this study of children after surgical intervention for congenital heart disease, we measured endothelin-1 levels and used BQ123, a selective endothelin-A receptor antagonist, together with inhaled nitric oxide to discriminate dysfunctional pulmonary endothelial vasodilation from endothelin-mediated pulmonary vasoconstriction. Methods: All children were examined early after surgical intervention in the intensive care unit. Pulmonary vascular resistance (with respiratory mass spectrometry), as well as arterial and venous endothelin-1 levels (measured by means of a quantitative enzyme-linked immunosorbent assay), were determined in 7 children (age range, 3.3-13.7 months; median age, 6.3 months) with intracardiac shunting defects at baseline and during ventilation with a fraction of inspired oxygen of 0.65, with additional BQ123 (0.1 mg/kg infused over 20 minutes), and with inhaled nitric oxide (20 ppm). Results: Pulmonary vascular resistance decreased from 7.7 ± 3.4 at baseline to 6.1 ± 2.8 Woods units · m−2 (P =.022) at a fraction of inspired oxygen of 0.65 and to 4.7 ± 2.7 Woods units · m−2 (P =.013) during BQ123 infusion. Inhaled nitric oxide had no further effect on pulmonary vascular resistance. Left atrial endothelin-1 levels (1.35-5.12 pg/mL; mean, 2.4 pg/mL) correlated significantly with the decrease in pulmonary vascular resistance in response to BQ123 infusion (r2 = 0.89, P =.003). Conclusion: Postoperative elevation of pulmonary vascular resistance in children after surgical intervention for congenital heart disease is responsive to endothelin-A blockade with BQ123. Increased levels of endothelin-1 predict the response to this therapy, which might become an important addition to the clinical armamentarium in postoperative pulmonary hypertensive disease.J Thorac Cardiovasc Surg 2002;124:435-4

    Antibiotic Conjugates with an Artificial MECAM-Based Siderophore Are Potent Agents against Gram-Positive and Gram-Negative Bacterial Pathogens

    Get PDF
    The development of novel drugs against Gram-negative bacteria represents an urgent medical need. To overcome their outer cell membrane, we synthesized conjugates of antibiotics and artificial siderophores based on the MECAM core, which are imported by bacterial iron uptake systems. Structures, spin states, and iron binding properties were predicted in silico using density functional theory. The capability of MECAM to function as an effective artificial siderophore in Escherichia coli was proven in microbiological growth recovery and bioanalytical assays. Following a linker optimization focused on transport efficiency, five ÎČ-lactam and one daptomycin conjugates were prepared. The most potent conjugate 27 showed growth inhibition of Gram-positive and Gram-negative multidrug-resistant pathogens at nanomolar concentrations. The uptake pathway of MECAMs was deciphered by knockout mutants and highlighted the relevance of FepA, CirA, and Fiu. Resistance against 27 was mediated by a mutation in the gene encoding ExbB, which is involved in siderophore transport

    High Calcification Costs Limit Mussel Growth at Low Salinity

    Get PDF
    In coastal temperate regions such as the Baltic Sea, calcifying bivalves dominate benthic communities playing a vital ecological role in maintaining biodiversity and nutrient recycling. At low salinities, bivalves exhibit reduced growth and calcification rates which is thought to result from physiological constraints associated with osmotic stress. Calcification demands a considerable amount of energy in calcifying molluscs and estuarine habitats provide sub-optimal conditions for calcification due to low concentrations of calcification substrates and large variations in carbonate chemistry. Therefore, we hypothesize that slow growth rates in estuarine bivalves result from increased costs of calcification, rather than costs associated with osmotic stress. To investigate this, we estimated the cost of calcification for the first time in benthic bivalve life stages and the relative energy allocation to calcification in three Mytilus populations along the Baltic salinity gradient. Our results indicate that calcification rates are significantly reduced only in 6 psu populations compared to 11 and 16 psu populations, coinciding with ca. 2–3-fold higher calcification costs at low salinity and temperature. This suggests that reduced growth of Baltic Mytilus at low salinities results from increased calcification costs rather than osmotic stress related costs. We also reveal that shell growth (both calcification and shell organic production) demands 31–60% of available assimilated energy from food, which is significantly higher than previous estimates. Energetically expensive calcification represents a major constraint on growth of mytilids in the estuarine and coastal seas where warming, acidification and desalination are predicted over the next century

    Endotoxin tolerance in abdominal aortic aneurysm macrophages, in vitro: a case–control study

    Get PDF
    Macrophages are implicated in the pathogenesis of abdominal aortic aneurysm (AAA). This study examined the environmentally conditioned responses of AAA macrophages to inflammatory stimuli. Plasma- and blood-derived monocytes were separated from the whole blood of patients with AAA (30-45 mm diameter; = 33) and sex-matched control participants ( = 44). Increased concentrations of pro-inflammatory and pro-oxidant biomarkers were detected in the plasma of AAA patients, consistent with systemic inflammation and oxidative stress. However, in monocyte-derived macrophages, a suppressed cytokine response was observed in AAA compared to the control following stimulation with lipopolysaccharide (LPS) (tumor necrosis factor alpha (TNF-α) 26.9 ± 3.3 vs. 15.5 ± 3.2 ng/mL, < 0.05; IL-6 3.2 ± 0.6 vs. 1.4 ± 0.3 ng/mL, < 0.01). LPS-stimulated production of 8-isoprostane, a biomarker of oxidative stress, was also markedly lower in AAA compared to control participants. These findings are consistent with developed tolerance in human AAA macrophages. As Toll-like receptor 4 (TLR4) has been implicated in tolerance, macrophages were examined for changes in TLR4 expression and distribution. Although TLR4 mRNA and protein expression were unaltered in AAA, cytosolic internalization of receptors and lipid rafts was found. These findings suggest the inflamed, pro-oxidant AAA microenvironment favors macrophages with an endotoxin-tolerant-like phenotype characterized by a diminished capacity to produce pro-inflammatory mediators that enhance the immune response

    Immunoadsorption for Treatment of Patients with Suspected Alzheimer Dementia and Agonistic Autoantibodies against Alpha1a-Adrenoceptor—Rationale and Design of the IMAD Pilot Study

    Get PDF
    Background: agonistic autoantibodies (agAABs) against G protein-coupled receptors (GPCR) have been linked to cardiovascular disease. In dementia patients, GPCR-agAABs against the &alpha;1- and &szlig;2-adrenoceptors (&alpha;1AR- and &szlig;2AR) were found at a prevalence of 50%. Elimination of agAABs by immunoadsorption (IA) was successfully applied in cardiovascular disease. The IMAD trial (Efficacy of immunoadsorption for treatment of persons with Alzheimer dementia and agonistic autoantibodies against alpha1A-adrenoceptor) investigates whether the removal of &alpha;1AR-AABs by a 5-day IA procedure has a positive effect (improvement or non-deterioration) on changes of hemodynamic, cognitive, vascular and metabolic parameters in patients with suspected Alzheimer&rsquo;s clinical syndrome within a one-year follow-up period. Methods: the IMAD trial is designed as an exploratory monocentric interventional trial corresponding to a proof-of-concept phase-IIa study. If cognition capacity of eligible patients scores 19&ndash;26 in the Mini Mental State Examination (MMSE), patients are tested for the presence of agAABs by an enzyme-linked immunosorbent assay (ELISA)-based method, followed by a bioassay-based confirmation test, further screening and treatment with IA and intravenous immunoglobulin G (IgG) replacement. We aim to include 15 patients with IA/IgG and to complete follow-up data from at least 12 patients. The primary outcome parameter of the study is uncorrected mean cerebral perfusion measured in mL/min/100 gr of brain tissue determined by magnetic resonance imaging with arterial spin labeling after 12 months. Conclusion: IMAD is an important pilot study that will analyze whether the removal of &alpha;1AR-agAABs by immunoadsorption in &alpha;1AR-agAAB-positive patients with suspected Alzheimer&rsquo;s clinical syndrome may slow the progression of dementia and/or may improve vascular functional parameters

    Effectiveness of behavioral interventions to reduce the intake of sugar-sweetened beverages in children and adolescents: a systematic review and meta-analysis.

    Get PDF
    Context: Consumption of sugar-sweetened beverages (SSBs) among children has been associated with adverse health outcomes. Numerous behavioral interventions aimed at reducing the intake of SSBs among children have been reported, yet evidence of their effectiveness is lacking. Objective: This systematic review explored the effectiveness of educational and behavioral interventions to reduce SSB intake and to influence health outcomes among children aged 4 to 16 years. Data Sources: Seven databases were searched for randomized controlled trials published prior to September 2016. Studies identified were screened for eligibility. Study Selection: Trials were included in the review if they met the PICOS (Population, Intervention, Comparison, Outcome, and Study design) criteria for inclusion of studies. Data Extraction: Data were extracted by 2 reviewers following Cochrane guidelines and using Review Manager software. Results: Of the 16 trials included, 12 were school based and 4 were community or home based. Only 3 trials provided data that could be pooled into a meta-analysis for evaluating change in SSB intake. Subgroup analyses showed a trend toward a significant reduction in SSB intake in participants in school-based interventions compared with control groups. Change in body mass index z scores was not statistically significant between groups. Conclusions: The quality of evidence from included trials was considered moderate, and the effectiveness of educational and behavioral interventions in reducing SSB intake was modest. Systematic Review Registration: PROSPERO registration number CRD42014004432

    SARS-CoV-2 variant Alpha has a spike-dependent replication advantage over the ancestral B.1 strain in human cells with low ACE2 expression

    Get PDF
    Epidemiological data demonstrate that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) Alpha and Delta are more transmissible, infectious, and pathogenic than previous variants. Phenotypic properties of VOC remain understudied. Here, we provide an extensive functional study of VOC Alpha replication and cell entry phenotypes assisted by reverse genetics, mutational mapping of spike in lentiviral pseudotypes, viral and cellular gene expression studies, and infectivity stability assays in an enhanced range of cell and epithelial culture models. In almost all models, VOC Alpha spread less or equally efficiently as ancestral (B.1) SARS-CoV-2. B.1. and VOC Alpha shared similar susceptibility to serum neutralization. Despite increased relative abundance of specific sgRNAs in the context of VOC Alpha infection, immune gene expression in infected cells did not differ between VOC Alpha and B.1. However, inferior spreading and entry efficiencies of VOC Alpha corresponded to lower abundance of proteolytically cleaved spike products presumably linked to the T716I mutation. In addition, we identified a bronchial cell line, NCI-H1299, which supported 24-fold increased growth of VOC Alpha and is to our knowledge the only cell line to recapitulate the fitness advantage of VOC Alpha compared to B.1. Interestingly, also VOC Delta showed a strong (595-fold) fitness advantage over B.1 in these cells. Comparative analysis of chimeric viruses expressing VOC Alpha spike in the backbone of B.1, and vice versa, showed that the specific replication phenotype of VOC Alpha in NCI-H1299 cells is largely determined by its spike protein. Despite undetectable ACE2 protein expression in NCI-H1299 cells, CRISPR/Cas9 knock-out and antibody-mediated blocking experiments revealed that multicycle spread of B.1 and VOC Alpha required ACE2 expression. Interestingly, entry of VOC Alpha, as opposed to B.1 virions, was largely unaffected by treatment with exogenous trypsin or saliva prior to infection, suggesting enhanced resistance of VOC Alpha spike to premature proteolytic cleavage in the extracellular environment of the human respiratory tract. This property may result in delayed degradation of VOC Alpha particle infectivity in conditions typical of mucosal fluids of the upper respiratory tract that may be recapitulated in NCI-H1299 cells closer than in highly ACE2-expressing cell lines and models. Our study highlights the importance of cell model evaluation and comparison for in-depth characterization of virus variant-specific phenotypes and uncovers a fine-tuned interrelationship between VOC Alpha- and host cell-specific determinants that may underlie the increased and prolonged virus shedding detected in patients infected with VOC Alpha

    Global application of an unoccupied aerial vehicle photogrammetry protocol for predicting aboveground biomass in non‐forest ecosystems

    Get PDF
    P. 1-15Non-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales. Here we developed and deployed a new protocol for photogrammetric height using unoccupied aerial vehicle (UAV) images to test its capability for delivering standardized measurements of biomass across a globally distributed field experiment. We assessed whether canopy height inferred from UAV photogrammetry allows the prediction of aboveground biomass (AGB) across low-stature plant species by conducting 38 photogrammetric surveys over 741 harvested plots to sample 50 species. We found mean canopy height was strongly predictive of AGB across species, with a median adjusted R2 of 0.87 (ranging from 0.46 to 0.99) and median prediction error from leave-one-out cross-validation of 3.9%. Biomass per-unit-of-height was similar within but different among, plant functional types. We found that photogrammetric reconstructions of canopy height were sensitive to wind speed but not sun elevation during surveys. We demonstrated that our photogrammetric approach produced generalizable measurements across growth forms and environmental settings and yielded accuracies as good as those obtained from in situ approaches. We demonstrate that using a standardized approach for UAV photogrammetry can deliver accurate AGB estimates across a wide range of dynamic and heterogeneous ecosystems. Many academic and land management institutions have the technical capacity to deploy these approaches over extents of 1–10 ha−1. Photogrammetric approaches could provide much-needed information required to calibrate and validate the vegetation models and satellite-derived biomass products that are essential to understand vulnerable and understudied non-forested ecosystems around the globe.S
    • 

    corecore