119 research outputs found

    Vegetation Dynamics. Natural versus Cultural and the Regeneration Potential. The Example of Sahara-Sahel

    Get PDF
    There is a principal and controversial debate on the so-called ‘Greening-Regreening’ of the Sahel. There still is the old philosophy of an expanding/shrinking ecosystem Sahara versus Sahel. In some concepts, it is presented as annual. Another concept is based on a general degradation of the Sahelian savannas – in some cases with a decline to a lower state of ecological equilibrium after a short period of resilience. Anyhow, there are also signs of still ongoing regeneration processes of vegetation and soil. The main problem, however, lies in the principal lack of terrestrial observation and in the confusion of terms. This mostly concern on vegetation units and their dynamics. The goal of this article is to explain the general nature of the Sahara and the Sahel based on maps and graphs. We try to analyse the dynamics of boundaries during the last 200 years. The main results are the tripartite nature of the Sahara, divided into semidesert, desert and Saharan savanna with relatively stable boundaries. A reconstruction of the vegetation for the last 200 years confirmed the position of these borderlines even under different states of the plant cover. It also revealed the nature of Sahelian savannas as cultural landscapes – in higher diversity and density. It is also possible that the North Sahelian savannas had been for long times under the dynamics of elephant landscapes. A high-resolution sediment and pollen record from the Middle Sahel of Niger evidenced the high diversity and resilience up to the severe drought of the 1970s. It was a definite stroke from which these savannas never reached again their former diversity despite a slide recovery named ‘Regreening’. The various projects for regeneration or conservation in Sahara or Sahel differ in two types of projects. The one is the installation of Nature Reserves/National Parks with special reserves for emblematic animals as keystone organisms and an auto-regeneration of vegetation and soil. The other type consists of pasture rotation projects such as in the Malian Gourma or in the Central Air Mts. The first initiative resulted in the decade-long protection against the severe degradations, which were typical for the surrounding regions. The rotation system was based on timewise open wells and of observed pasture status. It was conceived together with the local populations and has been respected until the invasion of northern cattle keepers during the peak of drought in 1984. After severe quarrels, the system collapsed and the savannas degraded heavily. A comparable project worked in the central Air Mts. for 5 years. Remarkable results have been, but the rebellion of the 1990s, put a sudden end on it. The general insecurity of the last decades caused by civil war and/or various terrrorist groups led to a re-evaluation of a great number of regeneration initiatives including the pharaonic ‘Great Green Wall’, a continent wide forest belt. However, smaller projects on the village level may better develop as they are under the responsability of local population, which can reactivate their long experience. The ‘regreening’ might be restricted to the region of the southern Sahara and the northern Sahel as well as to the traditional park systems. Anyhow, even if a long-time amelioration of production systems will happen, the former must be regarded on the background of a rapidly increasing demography

    Diacidene, a polyene dicarboxylic acid from a Micromonospora isolate from the German Wadden Sea

    Get PDF
    Micromonospora sp. strain DB620 was isolated from a Wadden Sea sediment sample collected near Büsum (Germany) and is closely related (99% 16S-rRNA gene sequence similarity) to Micromonospora coxensis strain MTCC8093. It produced a new polyene dicarboxylic acid named diacidene (1) and in addition a derivative of chorismic acid, the known 3-[(1-carboxyvinyl)oxy]benzoic acid. The structure elucidation of 1 was achieved by applying different 1D and 2D NMR techniques as well as mass spectrometry and UV spectroscopy

    Geranylphenazinediol, an Acetylcholinesterase Inhibitor Produced by a Streptomyces Species

    Get PDF
    Geranylphenazinediol (1), a new phenazine natural product, was produced by the Streptomyces sp. strain LB 173, which was isolated from a marine sediment sample. The structure was established by analysis of NMR and MS data 1 inhibited the enzyme acetylcholinesterase in the low micromolar range and showed weak antibacterial activity. In order to get a more detailed picture of the activity profile of 1, its inhibitory potential was compared to that of related structures

    Late Neolithic Agriculture in Temperate Europe — A Long-Term Experimental Approach

    Get PDF
    Long-term slash-and-burn experiments, when compared with intensive tillage without manuring, resulted in a huge data set relating to potential crop yields, depending on soil quality, crop type, and agricultural measures. Cultivation without manuring or fallow phases did not produce satisfying yields, and mono-season cropping on freshly cleared and burned plots resulted in rather high yields, comparable to those produced during modern industrial agriculture - at least ten-fold the ones estimated for the medieval period. Continuous cultivation on the same plot, using imported wood from adjacent areas as fuel, causes decreasing yields over several years. The high yield of the first harvest of a slash-and-burn agriculture is caused by nutrient input through the ash produced and mobilization from the organic matter of the topsoil, due to high soil temperatures during the burning process and higher topsoil temperatures due to the soil’s black surface. The harvested crops are pure, without contamination of any weeds. Considering the amount of work required to fight weeds without burning, the slash-and-burn technique yields much better results than any other tested agricultural approach. Therefore, in dense woodland, without optimal soils and climate, slash-and-burn agriculture seems to be the best, if not the only, feasible method to start agriculture, for example, during the Late Neolithic, when agriculture expanded from the loess belt into landscapes less suitable for agriculture. Extensive and cultivation with manuring is more practical in an already-open landscape and with a denser population, but its efficiency in terms of the ratio of the manpower input to food output, is worse. Slash-and-burn agriculture is not only a phenomenon of temperate European agriculture during the Neolithic, but played a major role in land-use in forested regions worldwide, creating anthromes on a huge spatial scale.© 2017 the authorspublishedVersio

    The design, construction, and commissioning of the KATRIN experiment

    Get PDF
    The KArlsruhe TRItium Neutrino (KATRIN) experiment, which aims to make a direct and model-independent determination of the absolute neutrino mass scale, is a complex experiment with many components. More than 15 years ago, we published a technical design report (TDR) [1] to describe the hardware design and requirements to achieve our sensitivity goal of 0.2 eV at 90% C.L. on the neutrino mass. Since then there has been considerable progress, culminating in the publication of first neutrino mass results with the entire beamline operating [2]. In this paper, we document the current state of all completed beamline components (as of the first neutrino mass measurement campaign), demonstrate our ability to reliably and stably control them over long times, and present details on their respective commissioning campaigns
    corecore