946 research outputs found

    The Galactic bulge as seen in optical surveys

    Full text link
    The bulge is a region of the Galaxy of tremendous interest for understanding galaxy formation. However measuring photometry and kinematics in it raises several inherent issues, such as severe crowding and high extinction in the visible. Using the Besancon Galaxy model and a 3D extinction map, we estimate the stellar density as a function of longitude, latitude and apparent magnitude and we deduce the possibility of reaching and measuring bulge stars with Gaia. We also present an ongoing analysis of the bulge using the Canada-France-Hawaii Telescope.Comment: In SF2A-2008: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysic

    Stellar sources in the ISOGAL intermediate bulge fields

    Get PDF
    We present a study of ISOGAL sources in the "intermediate" galactic bulge (∣|ll∣| << 2∘^\circ, ∣|bb∣| ∌\sim 1∘^\circ--4∘^\circ), observed by ISOCAM at 7 and 15 ÎŒm\mu m. In combination with near-infrared (I, J, Ks_{\rm s}) data of DENIS survey, complemented by 2MASS data, we discuss the nature of the ISOGAL sources, their luminosities, the interstellar extinction and the mass-loss rates. A large fraction of the 1464 detected sources at 15 ÎŒm\mu m are AGB stars above the RGB tip, a number of them show an excess in ([7]-[15])0_{\rm 0} and (Ks_{\rm s}-[15])0_{\rm 0} colours, characteristic of mass-loss. The latter, especially (Ks_{\rm s}-[15])0_{\rm 0}, provide estimates of the mass-loss rates and show their distribution in the range 10−8^{-8} to 10−5^{-5} M⊙_{\rm \odot}/yr.Comment: 16 pages, accepted for publication in Astronomy and Astrophysic

    When the Milky Way turned off the lights: APOGEE provides evidence of star formation quenching in our Galaxy

    Full text link
    Quenching, the cessation of star formation, is one of the most significant events in the life cycle of galaxies. We show here the first evidence that the Milky Way experienced a generalised quenching of its star formation at the end of its thick disk formation ∌\sim9 Gyr ago. Elemental abundances of stars studied as part of the APOGEE survey reveal indeed that in less than ∌\sim2 Gyr the star formation rate in our Galaxy dropped by an order-of-magnitude. Because of the tight correlation between age and alpha abundance, this event reflects in the dearth of stars along the inner disk sequence in the [Fe/H]-[α\alpha/Fe] plane. Before this phase, which lasted about 1.5 Gyr, the Milky Way was actively forming stars. Afterwards, the star formation resumed at a much lower level to form the thin disk. These events are very well matched by the latest observation of MW-type progenitors at high redshifts. In late type galaxies, quenching is believed to be related to a long and secular exhaustion of gas. In our Galaxy, it occurred on a much shorter time scale, while the chemical continuity before and after the quenching indicates that it was not due to the exhaustion of the gas. While quenching is generally associated with spheroids, our results show that it also occurs in galaxies like the Milky Way, possibly when they are undergoing a morphological transition from thick to thin disks. Given the demographics of late type galaxies in the local universe, in which classical bulges are rare, we suggest further that this may hold true generally in galaxies with mass lower than or approximately M∗M^*, where quenching could be directly a consequence of thick disk formation. We emphasize that the quenching phase in the Milky Way could be contemporaneous with, and related to, the formation of the bar. We sketch a scenario on how a strong bar may inhibit star formation.Comment: 17 pages, 8 figures. Published versio

    Understanding AGB evolution in Galactic bulge stars from high-resolution infrared spectroscopy

    Full text link
    An analysis of high-resolution near-infrared spectra of a sample of 45 asymptotic giant branch (AGB) stars towards the Galactic bulge is presented. The sample consists of two subsamples, a larger one in the inner and intermediate bulge, and a smaller one in the outer bulge. The data are analysed with the help of hydrostatic model atmospheres and spectral synthesis. We derive the radial velocity of all stars, and the atmospheric chemical mix ([Fe/H], C/O, 12^{12}C/13^{13}C, Al, Si, Ti, and Y) where possible. Our ability to model the spectra is mainly limited by the (in)completeness of atomic and molecular line lists, at least for temperatures down to Teff≈3100T_{\rm eff}\approx3100 K. We find that the subsample in the inner and intermediate bulge is quite homogeneous, with a slightly sub-solar mean metallicity and only few stars with super-solar metallicity, in agreement with previous studies of non-variable M-type giants in the bulge. All sample stars are oxygen-rich, C/O<<1.0. The C/O and carbon isotopic ratios suggest that third dredge-up (3DUP) is absent among the sample stars, except for two stars in the outer bulge that are known to contain technetium. These stars are also more metal-poor than the stars in the intermediate or inner bulge. Current stellar masses are determined from linear pulsation models. The masses, metallicities and 3DUP behaviour are compared to AGB evolutionary models. We conclude that these models are partly in conflict with our observations. Furthermore, we conclude that the stars in the inner and intermediate bulge belong to a more metal-rich population that follows bar-like kinematics, whereas the stars in the outer bulge belong to the metal-poor, spheroidal bulge population.Comment: 21 pages, 13 figures, 6 tables (incl. appendix), years of work, published in MNRA

    Recent star formation in the inner Galactic Bulge seen by ISOGAL. I - Classification of bright mid-IR sources in a test field

    Full text link
    Context: The stellar populations in the central region of the Galaxy are poorly known because of the high visual extinction and very great source density in this direction. Aims: To use recent infrared surveys for studying the dusty stellar objects in this region. Methods: We analyse the content of a 20x20 arcmin^2 field centred at (l,b)=(-0.27,-0.06) observed at 7 and 15 microns as part of the ISOGAL survey. These ISO observations are more than an order of magnitude better in sensitivity and spatial resolution than the IRAS observations. The sources are cross-associated with other catalogues to identify various types of objects. We then derive criteria to distinguish young objects from post-main sequence stars. Results: We find that a sample of about 50 young stellar objects and ultra-compact HII regions emerges, out of a population of evolved AGB stars. We demonstrate that the sources colours and spatial extents, as they appear in the ISOGAL catalogue, possibly complemented with MSX photometry at 21 microns, can be used to determine whether the ISOGAL sources brighter than 300 mJy at 15 microns (or [15] < 4.5 mag) are young objects or late-type evolved stars.Comment: 15 pages, 12 figures. Accepted for publication in Astronomy and Astrophysic

    Mid-IR period-magnitude relations for AGB stars

    Full text link
    Asymptotic Giant Branch variables are found to obey period-luminosity relations in the mid-IR similar to those seen at K_S (2.14 microns), even at 24 microns where emission from circumstellar dust is expected to be dominant. Their loci in the M, logP diagrams are essentially the same for the LMC and for NGC6522 in spite of different ages and metallicities. There is no systematic trend of slope with wavelength. The offsets of the apparent magnitude vs. logP relations imply a difference between the two fields of 3.8 in distance modulus. The colours of the variables confirm that a principal period with log P > 1.75 is a necessary condition for detectable mass-loss. At the longest observed wavelength, 24 microns, many semi-regular variables have dust shells comparable in luminosity to those around Miras. There is a clear bifurcation in LMC colour-magnitude diagrams involving 24 micron magnitudes.Comment: 5 pages, 4 figure

    Mapping the Milky Way bulge at high resolution: the 3D dust extinction, CO, and X factor maps

    Full text link
    Three dimensional interstellar extinction maps provide a powerful tool for stellar population analysis. We use data from the VISTA Variables in the Via Lactea survey together with the Besan\c{c}on stellar population synthesis model of the Galaxy to determine interstellar extinction as a function of distance in the Galactic bulge covering −10<l<10 -10 < l < 10 and −10<b<5-10 < b <5. We adopted a recently developed method to calculate the colour excess. First we constructed the H-Ks vs. Ks and J-Ks vs. Ks colour-magnitude diagrams based on the VVV catalogues that matched 2MASS. Then, based on the temperature-colour relation for M giants and the distance-colour relations, we derived the extinction as a function of distance. The observed colours were shifted to match the intrinsic colours in the Besan\c{c}on model as a function of distance iteratively. This created an extinction map with three dimensions: two spatial and one distance dimension along each line of sight towards the bulge. We present a 3D extinction map that covers the whole VVV area with a resolution of 6' x 6', using distance bins of 0.5 kpc. The high resolution and depth of the photometry allows us to derive extinction maps for a range of distances up to 10 kpc and up to 30 magnitudes of extinction in AVA_{V}. Integrated maps show the same dust features and consistent values as other 2D maps. We discuss the spatial distribution of dust features in the line of sight, which suggests that there is much material in front of the Galactic bar, specifically between 5-7 kpc. We compare our dust extinction map with high-resolution 12CO\rm ^{12}CO maps towards the Galactic bulge, where we find a good correlation between 12CO\rm ^{12}CO and AV\rm A_{V}. We determine the X factor by combining the CO map and our dust extinction map. Our derived average value is consistent with the canonical value of the Milky Way.Comment: 11 pages, 18 figures, accepted for publication in Astronomy&Astrophysic

    Near-IR spectra of ISOGAL sources in the Inner Galactic Bulge

    Get PDF
    In this work we present near-IR spectra (HK-band) of a sample of 107 sources with mid-IR excesses at 7 and 15 ÎŒ\rm \mum detected during the ISOGAL survey. Making use of the DENIS interstellar extinction map from Schultheis et al. (1999) we derive luminosities and find that the Mbol\rm M_{bol} vs.~12CO\rm ^{12}CO and Mbolvs.H2O\rm M_{bol} vs. H_{2}O diagrams are powerful tools for identifying supergiants, AGB stars, giants and young stellar objects. The majority of our sample are AGB stars (~ 80%) while we find four good supergiant candidates, nine young stellar objects and 12 RGB candidates. We have used the most recent K0−[15]\rm K_{0}-[15] relation by Jeong et al. (2002) based on recent theoretical modeling of dust formation of AGB stars to determine mass-loss rates. However, the uncertainties in the mass-loss rates are rather large. The mass-loss rates of the supergiants are comparable with those in the solar neighbourhood while the long-period Variables cover a mass-loss range from −5<logM˙<−7\rm -5 < log \dot{\it{M}} < -7. The red giant candidateslie at the lower end of the mass-loss rate range between −6.5<logM˙<−9\rm -6.5 < log \dot{{\it{M}}} < -9. We used the equivalent width of the CO bandhead at 2.3 ÎŒm\rm \mu m, the NaI doublet and the CaI triplet to estimate metallicities using the relation by Ram\'{\i}rez et al. (\cite{Ramirez2000}). The metallicity distribution of the ISOGAL objects shows a mean [Fe/H] ∌\sim -0.25 dex with a dispersion of ±0.40dex\rm \pm 0.40 dex which is in agreement with the values of Ram\'{i}rez et al. (\cite{Ramirez2000}) for Galactic Bulge fields between b=−4o\rm b = -4^{o} and b=−1.3o\rm b = -1.3^{o}. A comparison with the solar neighbourhood sample of Lan\c{c}on & Wood (LW) shows that our sample is ~ 0.5 dex more metal-rich on average.Comment: 23 pages, 9 figures, 2 appendix with IR spectra. accepted for A&

    Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS II. The complete high resolution extinction map and implications for Bulge studies

    Full text link
    We use the Vista Variables in the Via Lactea (VVV) ESO public survey data to measure extinction values in the complete area of the Galactic bulge covered by the survey at high resolution. We derive reddening values using the method described in Paper I. This is based on measuring the mean (J-Ks) color of red clump giants in small subfields of 2' to 6' in the following bulge area: -10.3<b<+5.1 and -10<l<+10.4. To determine the reddening values E(J-Ks) for each region, we measure the RC color and compare it to the (J-Ks) color of RC stars measured in Baade's window, for which we adopt E(B-V)=0.55. This allows us to construct a reddening map sensitive to small scale variations minimizing the problems arising from differential extinction. The significant reddening variations are clearly observed on spatial scales as small as 2'. We find a good agreement between our extinction measurements and Schlegel maps in the outer bulge, but, as already stated in the literature the Schlegel maps are not reliable for regions within |b| < 6. In the inner regions we compare our results with maps derived from DENIS and Spitzer surveys. While we find good agreement with other studies in the corresponding overlapping regions, our extinction map has better quality due to both higher resolution and a more complete spatial coverage in the Bulge. We investigate the importance of differential reddening and demonstrate the need for high resolution extinction maps for detailed studies of Bulge stellar populations and structure. The extinction variations on scales of up to 2'-6', must be taken into account when analysing the stellar populations of the Bulge.Comment: Accepted for publication in A&
    • 

    corecore