176 research outputs found

    An Independent Assessment of the Technical Feasibility of the Mars One Mission Plan

    Get PDF
    In mid-2012, the Mars One program was announced, aiming to build the first human settlement on the surface of Mars. Following a series of precursor missions to develop and deploy key technologies, the first crewed mission would depart Earth in 2024, sending four people on a one-way journey to the surface of Mars. Additional four-person crews would be sent to Mars at every subsequent launch opportunity to further support and expand the Martian colony. While this program has been received with great fanfare, very little has been published in the technical literature on this mission architecture. As the Mars One mission plan represents a dramatic departure from more conservative exploration approaches, there are many uncertainties in the mission design. The establishment of a colony on Mars will rely on in-situ resource utilization (ISRU) and life support technologies that are more capable than the current state of the art. Moreover, resupply logistics and sparing will play a large role in the proposed colony, though the magnitude and behavior of these two effects is not well understood. In light of this, we develop a Mars settlement analysis tool that integrates a habitat simulation with an ISRU sizing model and a sparing analysis. A logistics model is utilized to predict the required number of launchers and provide a preliminary estimate of a portion of the program cost. We leverage this tool to perform an independent assessment of the technical feasibility of the Mars One mission architecture. Our assessment revealed a number of insights into architecture decisions for establishing a colony on the Martian surface. If crops are used as the sole food source, they will produce unsafe oxygen levels in the habitat. Furthermore, the ISRU system mass estimate is 8% of the mass of the resources it would produce over a two year period. That being said, the ISRU technology required to produce nitrogen, oxygen, and water on the surface of Mars is at a relatively low Technology Readiness Level (TRL), so such findings are preliminary at best. A spare parts analysis revealed that spare parts quickly come to dominate resupply mass as the settlement grows: after 130 months on the Martian surface, spare parts compose 62% of the mass brought from Earth to the Martian surface. The space logistics analysis revealed that, for the best scenario considered, establishing the first crew for a Mars settlement will require approximately 15 Falcon Heavy launchers and require $4.5 billion in funding, and these numbers will grow with additional crews. It is important to note that these numbers are derived only when considering the launch of life support and ISRU systems with spare parts. To capture a more realistic estimate of mission cost, future work should consider development and operations costs, as well as the integration of other key mission elements, such as communications and power systems. Technology development towards improving the reliability of life support systems, the TRL of ISRU systems, and the capability of Mars in-situ manufacturing will have a significant impact on reducing the mass and cost of Mars settlement architectures.United States. National Aeronautics and Space Administration (Grant NNX13AL76H)United States. National Aeronautics and Space Administration (Grant NNX14AM42H)Josephine De Karman Fellowship Trus

    Measurement of the B0s→Ό+Ό− Branching Fraction and Effective Lifetime and Search for B0→Ό+Ό− Decays

    Get PDF
    A search for the rare decays Bs0→Ό+ÎŒ- and B0→Ό+ÎŒ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb-1. An excess of Bs0→Ό+ÎŒ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→Ό+ÎŒ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→Ό+ÎŒ- effective lifetime, τ(Bs0→Ό+ÎŒ-)=2.04±0.44±0.05  ps, is reported. No significant excess of B0→Ό+ÎŒ- decays is found, and a 95% confidence level upper limit, B(B0→Ό+ÎŒ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- and B0→Ό+Ό−B^0\to\mu^+\mu^- is performed at the LHCb experiment using data collected in pppp collisions corresponding to a total integrated luminosity of 4.4 fb−1^{-1}. An excess of Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→Ό+Ό−)=(3.0±0.6−0.2+0.3)×10−9{\cal B}(B^0_s\to\mu^+\mu^-)=\left(3.0\pm 0.6^{+0.3}_{-0.2}\right)\times 10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→Ό+Ό−B^0_s\to\mu^+\mu^- effective lifetime, τ(Bs0→Ό+Ό−)=2.04±0.44±0.05\tau(B^0_s\to\mu^+\mu^-)=2.04\pm 0.44\pm 0.05 ps, is reported. No significant excess of B0→Ό+Ό−B^0\to\mu^+\mu^- decays is found and a 95 % confidence level upper limit, B(B0→Ό+Ό−)<3.4×10−10{\cal B}(B^0\to\mu^+\mu^-)<3.4\times 10^{-10}, is determined. All results are in agreement with the Standard Model expectations

    Molten Regolith Electrolysis reactor modeling and optimization of in-situ resource utilization systems

    No full text
    Thesis: S.M., Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2015.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 161-170).In-Situ Resource Utilization (ISRU), the practice of leveraging space resources to support space exploration, has long been considered as a possible avenue for reducing the mass and cost of exploration architectures. In particular, producing oxygen from lunar regolith holds great promise for maintaining life support systems and enabling orbital refueling of chemical propulsion systems to reduce launch vehicle mass. Unfortunately, significant uncertainty as to the mass, power, and performance of such ISRU systems has prohibited a rigorous quantitative analysis. To this end, parametric sizing models of several ISRU systems are developed to better understand their mass, power, and performance. Special focus is given to an oxygen production technique, called Molten Regolith Electrolysis (MRE), in which molten lunar regolith is directly electrolyzed to produce oxygen gas and metals, such as iron and silicon. The MRE reactor model has a foundation of regolith material property models validated by data from Apollo samples and regolith simulants. A coupled electrochemical and thermodynamic simulation is used to provide high-fidelity analysis of MRE reactor designs. A novel design methodology is developed that uses data from the simulation to parametrically generate mass, volume, power, and performance estimates for an MRE reactor that meets a set of performance criteria. An integrated ISRU system model, including an MRE reactor, power system, excavator, liquid oxygen storage system, and other systems, is leveraged in a hybrid optimization scheme to study the optimal system design and performance characteristics. The optimized models predict that a 400 kg, 14 kW MRE-based ISRU system can produce 1,000 kg oxygen per year from lunar Highlands regolith. A 1593 kg, 56.5 kW system can produce 10,000 kg oxygen per year. It is found that the optimal design of an MRE-based ISRU system does not vary significantly with regolith type, demonstrating the technique's robustness to variations in regolith composition. The mass and power of the optimized ISRU system exhibit an economy of scale, indicating that larger quantities of oxygen can be produced more efficiently. In fact, the production efficiency estimates of a lunar ISRU system provide initial evidence that lunar ISRU may prove beneficial in supporting a Mars Exploration campaign.by Samuel Steven Schreiner.S.M

    An independent assessment of the technical feasibility of the Mars One mission plan – Updated analysis

    No full text
    In recent years, the Mars One program has gained significant publicity for its plans to colonize the red planet. Beginning in 2025, the program plans to land four people on Mars every 26 months via a series of one-way missions, using exclusively existing technology. This one-way approach has frequently been cited as a key enabler of accelerating the first crewed landing on Mars. While the Mars One program has received considerable attention, little has been published in the technical literature regarding the formulation of its mission architecture. In light of this, we perform an independent analysis of the technical feasibility of the Mars One mission plan, focusing on the architecture of the life support and in-situ resource utilization (ISRU) systems, and their impact on sparing and space logistics. To perform this analysis, we adopt an iterative analysis approach in which we model and simulate the mission architecture, assess its feasibility, implement any applicable modifications while attempting to remain within the constraints set forth by Mars One, and then resimulate and reanalyze the revised version of the mission architecture. Where required information regarding the Mars One mission architecture is not available, we assume numerical values derived from standard spaceflight design handbooks and documents. Through four iterations of this process, our analysis finds that the Mars One mission plan, as publicly described, is not feasible. This conclusion is obtained from analyses based on mission assumptions derived from and constrained by statements made by Mars One, and is the result of the following findings: (1) several technologies including ISRU, life support, and entry, descent, and landing (EDL) are not currently “existing, validated and available” as claimed by Mars One; (2) the crop growth area described by Mars One is insufficient to feed their crew; (3) increasing the crop growth area to provide sufficient food for the crew leads to atmospheric imbalances that requires a prohibitively large ISRU atmospheric processor or a notably different system architecture to manage; and (4) at least 13 Falcon Heavy launches are needed to deliver a portion of the required equipment to the Martian surface, a value that is at least double that planned by Mars One for the same mission phase. Most importantly, we find that the one-way nature of the Mars One mission, coupled with its plans to increase its crew population every 26 months, causes the operating costs of the program to grow continually over time. This is due to the fact that maintaining a growing colony on the Martian surface incurs increasing equipment and spare parts resupply requirements and hence launch costs over time. Based on published launch vehicle and lander estimates, our analysis finds that by the launch of the fifth crew, the cost associated with launching a portion of all required equipment and spares is approximately equal to half of the total NASA FY2015 budget – and this cost will grow when other critical systems outside the scope of this analysis are included. To mitigate these costs and bring the plan closer towards feasibility, we recommend a number of mission architecture modifications and technology development efforts be implemented before the initiation of any Mars settlement campaign. These include the further development of EDL, life support, and ISRU technologies, as well as additive manufacturing technology that utilizes ISRU-derived Martian feedstock as a potential means to address the growing cost of resupply.United States. National Aeronautics and Space Administration (NASA Grant NNX13AL76H)United States. National Aeronautics and Space Administration (NASA Grant NNX14AM42H)Josephine De Karman Fellowship Trus

    The Rise of African SIM Registration: Mobility, Identity, Surveillance and Resistance

    No full text

    A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (LIBERATE)

    No full text

    How (not) to think of the ‘dead-donor’ rule

    No full text

    Study of ΄\Upsilon production in ppPb collisions at sNN=8.16\sqrt{s_{NN}}=8.16 TeV

    Get PDF
    International audienceThe production of ϒ(nS) mesons (n = 1, 2, 3) in pPb and Pbp collisions at a centre-of-mass energy per nucleon pair sNN=8.16 \sqrt{s_{\mathrm{NN}}}=8.16 TeV is measured by the LHCb experiment, using a data sample corresponding to an integrated luminosity of 31.8 nb−1^{−1}. The ϒ(nS) mesons are reconstructed through their decays into two opposite-sign muons. The measurements comprise the differential production cross-sections of the ϒ(1S) and ϒ(2S) states, their forward-to-backward ratios and nuclear modification factors. The measurements are performed as a function of the transverse momentum pT_{T} and rapidity in the nucleon-nucleon centre-of-mass frame y∗^{*} of the ϒ(nS) states, in the kinematic range pT_{T} < 25 GeV/c and 1.5 < y∗^{*} < 4.0 (−5.0 < y∗^{*} < −2.5) for pPb (Pbp) collisions. In addition, production cross-sections for ϒ(3S) are measured integrated over phase space and the production ratios between all three ϒ(nS) states are determined. Suppression for bottomonium in proton-lead collisions is observed, which is particularly visible in the ratios. The results are compared to theoretical models

    Measurement of the branching fraction and CPCP asymmetry in B+→J/ψρ+B^{+}\rightarrow J/\psi \rho^{+} decays

    No full text
    International audienceThe branching fraction and direct C ⁣PC\!P asymmetry of the decay B+ ⁣→J/ψρ+{{{B} ^+}} \!\rightarrow {{J /\psi }} {{\rho } ^+} are measured using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7 and 8 TeV, corresponding to a total integrated luminosity of 3   fb −1\,\text{ fb }^{-1} . The following results are obtained: B(B+ ⁣→J/ψρ+)=(3.81+0.25−0.24±0.35)×10−5,AC ⁣P(B+ ⁣→J/ψρ+)=−0.045+0.056−0.057±0.008,\begin{aligned} \mathcal {B}({{B} ^+} \!\rightarrow {{J /\psi }} {{\rho } ^+} )&= (3.81^{+0.25-0.24} \pm 0.35) \times 10^{-5},\\ \mathcal {A}^{{C\!P}} ({{B} ^+} \!\rightarrow {{J /\psi }} {{\rho } ^+} )&= -0.045^{+0.056-0.057} \pm 0.008, \end{aligned} where the first uncertainties are statistical and the second systematic. Both measurements are the most precise to date
    • 

    corecore