96 research outputs found

    Film forming polymeric solutions as drug delivery systems for the skin

    Get PDF
    The aim of this thesis was to develop and investigate film forming polymeric solutions as a novel delivery system for the skin. These solutions form very thin, flexible and almost invisible films on the skin which can serve as a reservoir for the transdermal delivery of drugs. In a first step various excipients were studied and formulation experiments were performed to provide the technological basis for the new delivery system. Compositions with different polymers were identified that provided suitable properties for the intended application (short drying time, low viscosity, permanence on the skin). Methods for the evaluation and characterization of the novel dosage form were developed and assessed. The drug delivery from the film forming systems through human epidermis was investigated with caffeine as model drug and steroidal hormones as therapeutically relevant compounds. The impact of different parameters on the drug permeation from the polymeric system was tested. Among these parameters were the nature of the solvent, the drug concentration or the incorporation of chemical enhancers. Finally, comparative in vitro and in vivo studies with registered transdermal patches were carried out to assess the drug delivering potential of the new dosage form for steroidal hormones. The obtained results have demonstrated that film forming polymeric solutions are a promising approach for transdermal drug delivery that should be pursued further in the future.Das Ziel der vorliegenden Arbeit war es, filmbildenden Polymerlösungen als neue Arzneiform fĂŒr die Haut zu entwickeln und zu untersuchen. Diese Lösungen bilden auf der Haut sehr dĂŒnne, flexible und nahezu unsichtbare Filme, die als Reservoir fĂŒr die transdermale Wirkstoffapplikation dienen können. In einem ersten Schritt wurden verschiedene Hilfsstoffe getestet und Formulierungsversuche durchgefĂŒhrt, um eine technologische Basis fĂŒr die neue Darreichungsform zu schaffen. Zubereitungen mit verschiedenen Polymeren wurden identifiziert, die geeignete Eigenschaften fĂŒr die beabsichtigte Anwendung aufwiesen (kurze Trocknungsdauer, geringe ViskositĂ€t, Nachhaltigkeit auf der Haut). Methoden zur Evaluierung und Charakterisierung der Formulierungen wurden entwickelt und bewertet. Die Wirkstoffverabreichung aus den filmbildenden Systemen durch Humanepidermis wurde mit der Modellsubstanz Koffein sowie mit therapeutisch relevanten steroidalen Hormonen untersucht. Der Einfluss verschiedener Parameter auf die Wirkstoffpenetration aus den Polymersystemen wurde getestet. Zu diesen Parametern gehörten die Art des Lösungsmittels, die Wirkstoffbeladung und die Gegenwart von chemischen Penetrationsverbesserern. Schließlich wurden vergleichende Untersuchungen mit zugelassenen transdermalen Pflastern durchgefĂŒhrt, um das Potential der neuen Arzneiform hinsichtlich der Wirkstoffverabreichung einschĂ€tzen zu können. Die erzielten Ergebnisse haben gezeigt, dass filmbildende Polymerlösungen ein vielversprechender Ansatz fĂŒr die transdermale Wirkstoffgabe sind, der in Zukunft weiterverfolgt werden sollte

    Professional training in nutrition education. Participants and implementation framework in primary school

    Get PDF
    Non-formale Fortbildungsangebote fĂŒr die ErnĂ€hrungspraxis werden zunehmend angeboten und in Anspruch genommen. In der vorliegenden Untersuchung wurden die Teilnehmenden eines bundesweiten Fortbildungsangebots, die ErnĂ€hrungspraxis in der Grundschule aufgreifen möchten, hinsichtlich ihrer Qualifikation und Kompetenzen sowie den jeweiligen Rahmenbedingungen ihrer TĂ€tigkeit in der Grundschule untersucht. (DIPF/Orig.)Non-formal professional training opportunities in nutrition education are increasingly being offered and taken up. The present study examined the participants in a nationwide non-formal training in nutrition education, who are interested in taking up nutritional education into primary schools, with regard to their qualifications, competencies and implementation framework. (DIPF/Orig.

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma

    Get PDF
    Acknowledgments We thank Dr Stuart MacGregor for his input on the study proposal and review of prior versions of this manuscript. We also thank all patients and controls for participating in this study. The MD Anderson controls were drawn from dbGaP (study accession: phs000187.v1.p1). Genotyping of these controls were done through the University of Texas MD Anderson Cancer Center (UTMDACC) and the Johns Hopkins University Center for Inherited Disease Research (CIDR). We acknowledge the principal investigators of this study: Christopher Amos, Qingyi Wei, and Jeffrey E. Lee. Controls from the Genome-Wide Association Study of Parkinson Disease were obtained from dbGaP (study accession: phs000196.v2.p1). This work, in part, used data from the National Institute of Neurological Disorders and Stroke (NINDS) dbGaP database from the CIDR: NeuroGenetics Research Consortium Parkinson’s disease study. We acknowledge the principal investigators and coinvestigators of this study: Haydeh Payami, John Nutt, Cyrus Zabetian, Stewart Factor, Eric Molho, and Donald Higgins. Controls from the Chronic Renal Insufficiency Cohort (CRIC) were drawn from dbGaP (study accession: phs000524.v1.p1). The CRIC study was done by the CRIC investigators and supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Data and samples from CRIC reported here were supplied by NIDDK Central Repositories. This report was not prepared in collaboration with investigators of the CRIC study and does not necessarily reflect the opinions or views of the CRIC study, the NIDDK Central Repositories, or the NIDDK. We acknowledge the principal investigators and the project officer of this study: Harold I Feldman, Raymond R Townsend, Lawrence J. Appel, Mahboob Rahman, Akinlolu Ojo, James P. Lash, Jiang He, Alan S Go, and John W. Kusek. The following UK hospitals participated in sample collection through the Stomach and Oesophageal Cancer Study (SOCS) collaboration network: Addenbrooke’s Hospital, University College London, Bedford Hinchingbrooke Hospital, Peterborough City Hospital, West Suffolk Norfolk and Norwich University Hospital, Churchill Hospital, John Hospital, Velindre Hospital, St Bartholomew’s Hospital, Queen’s Burton, Queen Elisabeth Hospital, Diana Princess of Wales, Scunthorpe General Hospital, Royal Devon & Exeter Hospital, New Cross Hospital, Belfast City Hospital, Good Hope Hospital, Heartlands Hospital, South Tyneside District General Hospital, Cumberland Infirmary, West Cumberland Hospital, Withybush General Hospital, Stoke Mandeville Hospital, Wycombe General Hospital, Wexham Park Hospital, Southend Hospital, Guy’s Hospital, Southampton General Hospital, Bronglais General Hospital, Aberdeen Royal Infirmary, Manor Hospital, Clatterbridge Centre for Oncology, Lincoln County Hospital, Pilgrim Hospital, Grantham & District Hospital, St Mary’s Hospital London, Croydon University Hospital, Whipps Cross University Hospital, Wansbeck General Hospital, Hillingdon Hospital, Milton Keynes General Hospital, Royal Gwent Hospital, Tameside General Hospital, Castle Hill Hospital, St Richard’s Hospital, Ipswich Hospital, St Helens Hospital, Whiston Hospital, Countess of Chester Hospital, St Mary’s Hospital IOW, Queen Alexandra Hospital, Glan Clwyd Hospital, Wrexham Maelor Hospital, Darent Valley Hospital, Royal Derby Hospital, Derbyshire Royal Infirmary, Scarborough General Hospital, Kettering General Hospital, Kidderminster General Hospital, Royal Lancaster Infirmary, Furness General Hospital, Westmorland General Hospital, James Cook University Hospital, Friarage Hospital, Stepping Hill Hospital, St George’s Hospital London, Doncaster Royal Infirmary, Maidstone Hospital, Tunbridge Hospital, Prince Charles Hospital, Hartlepool Hospital, University Hospital of North Tees, Ysbyty Gwynedd, St. Jame’s University Hospital, Leeds General Infirmary, North Hampshire Hospital, Royal Preston Hospital, Chorley and District General, Airedale General Hospital, Huddersfield Royal Infirmary, Calderdale Royal Hospital, Torbay District General Hospital, Leighton Hospital, Royal Albert Edward Infirmary, Royal Surrey County Hospital, Bradford Royal Infirmary, Burnley General Hospital, Royal Blackburn Hospital, Royal Sussex County Hospital, Freeman Hospital, Royal Victoria Infirmary, Victoria Hospital Blackpool, Weston Park Hospital, Royal Hampshire County Hospital, Conquest Hospital, Royal Bournemouth General Hospital, Mount Vernon Hospital, Lister Hospital, William Harvey Hospital, Kent and Canterbury Hospital, Great Western Hospital, Dumfries and Galloway Royal Infirmary, Poole General Hospital, St Hellier Hospital, North Devon District Hospital, Salisbury District Hospital, Weston General Hospital, University Hospital Coventry, Warwick Hospital, George Eliot Hospital, Alexandra Hospital, Nottingham University Hospital, Royal Chesterfield Hospital, Yeovil District Hospital, Darlington Memorial Hospital, University Hospital of North Durham, Bishop Auckland General Hospital, Musgrove Park Hospital, Rochdale Infirmary, North Manchester General, Altnagelvin Area Hospital, Dorset County Hospital, James Paget Hospital, Derriford Hospital, Newham General Hospital, Ealing Hospital, Pinderfields General Hospital, Clayton Hospital, Dewsbury & District Hospital, Pontefract General Infirmary, Worthing Hospital, Macclesfield Hospital, University Hospital of North Staffordshire, Salford Royal Hospital, Royal Shrewsbury Hospital, and Manchester Royal Infirmary. Conflict of interest The authors disclose no conflicts. Funding This work was primarily funded by the National Institutes of Health (NIH) (R01CA136725). The funders of the study had no role in the design, analysis, or interpretation of the data, nor in writing or publication decisions related to this article. Jing Dong was supported by a Research Training Grant from the Cancer Prevention and Research Institute of Texas (CPRIT; RP160097) and the Research and Education Program Fund, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin (AHW). Quinn T. Ostrom was supported by RP160097. Puya Gharahkhani was supported by a grant from National Health and Medical Research Council of Australia (1123248). Geoffrey Liu was supported by the Alan B. Brown Chair in Molecular Genomics and by the CCO Chair in Experimental Therapeutics and Population Studies. The University of Cambridge received salary support for Paul D. Pharoah from the NHS in the East of England through the Clinical Academic Reserve. Brian J. Reid was supported by a grant (P01CA91955) from the NIH/National Cancer Institute (NCI). Nicholas J. Shaheen was supported by a grant (P30 DK034987) from NIH. Thomas L. Vaughan was supported by NIH Established Investigator Award K05CA124911. Michael B. Cook was supported by the Intramural Research Program of the NCI, NIH, Department of Health and Human Services. Douglas A. Corley was supported by the NIH grants R03 KD 58294, R21DK077742, and RO1 DK63616 and NCI grant R01CA136725. Carlo Maj was supported by the BONFOR-program of the Medical Faculty, University of Bonn (O-147.0002). Jesper Lagergren was supported by the United European Gastroenterology (UEG) Research Prize. David C. Whiteman was supported by fellowships from the National Health and Medical Research Council of Australia (1058522, 1155413).Peer reviewedPostprin

    LICC: L-BLP25 in patients with colorectal carcinoma after curative resection of hepatic metastases--a randomized, placebo-controlled, multicenter, multinational, double-blinded phase II trial

    Get PDF
    Background: 15-20% of all patients initially diagnosed with colorectal cancer develop metastatic disease and surgical resection remains the only potentially curative treatment available. Current 5-year survival following R0-resection of liver metastases is 28-39%, but recurrence eventually occurs in up to 70%. To date, adjuvant chemotherapy has not improved clinical outcomes significantly. The primary objective of the ongoing LICC trial (L-BLP25 In Colorectal Cancer) is to determine whether L-BLP25, an active cancer immunotherapy, extends recurrence-free survival (RFS) time over placebo in colorectal cancer patients following R0/R1 resection of hepatic metastases. L-BLP25 targets MUC1 glycoprotein, which is highly expressed in hepatic metastases from colorectal cancer. In a phase IIB trial, L-BLP25 has shown acceptable tolerability and a trend towards longer survival in patients with stage IIIB locoregional NSCLC. Methods: This is a multinational, phase II, multicenter, randomized, double-blind, placebo-controlled trial with a sample size of 159 patients from 20 centers in 3 countries. Patients with stage IV colorectal adenocarcinoma limited to liver metastases are included. Following curative-intent complete resection of the primary tumor and of all synchronous/metachronous metastases, eligible patients are randomized 2:1 to receive either L-BLP25 or placebo. Those allocated to L-BLP25 receive a single dose of 300 mg/m2 cyclophosphamide (CP) 3 days before first L-BLP25 dose, then primary treatment with s.c. L-BLP25 930 mug once weekly for 8 weeks, followed by s.c. L-BLP25 930 mug maintenance doses at 6-week (years 1&2) and 12-week (year 3) intervals unless recurrence occurs. In the control arm, CP is replaced by saline solution and L-BLP25 by placebo. Primary endpoint is the comparison of recurrence-free survival (RFS) time between groups. Secondary endpoints are overall survival (OS) time, safety, tolerability, RFS/OS in MUC-1 positive cancers. Exploratory immune response analyses are planned. The primary endpoint will be assessed in Q3 2016. Follow-up will end Q3 2017. Interim analyses are not planned. Discussion: The design and implementation of such a vaccination study in colorectal cancer is feasible. The study will provide recurrence-free and overall survival rates of groups in an unbiased fashion. Trial Registration EudraCT Number 2011-000218-2

    Mass balance of the Greenland Ice Sheet from 1992 to 2018

    Get PDF
    In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn IsbrĂŠ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate
    • 

    corecore