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ABSTRACT 

Background and Aims: Esophageal adenocarcinoma (EA) is characterized by a strong and yet 

unexplained male predominance (with a male-to-female ratio in incidence of up to 8:1). Genome-wide 

association studies (GWAS) have identified more than 20 susceptibility loci for EA and its premalignant 

lesion, Barrett’s esophagus (BE). However, the sex differences in genetic associations with BE/EA 

remain largely unknown. 

Methods: Given strong genetic overlap, BE and EA cases were combined into a single case group for 

analysis and were compared with population-based controls. We performed a sex-specific GWAS of 

BE/EA in three separate studies and then meta-analyzed using a fixed-effects inverse variance-weighting 

approach (6,758 male cases, 7,489 male controls, 1,670 female cases and 6,174 female controls). A series 

of downstream analyses were conducted separately in males and female to identify genes associated with 

BE/EA and the genetic correlations between BE/EA and other traits.  

Results: Meta-analysis of sex-specific GWAS identified three novel independent genome-wide 

significant loci for BE/EA, including one variant at chromosome 12p12.3 (rs35827298, MGST1-LMO3, P 

= 1.28×10-8) detected in males only, and two variants at chromosome 8p (rs13259457, PRSS55-RP1L1, P 

= 6.65×10-9, and rs17321041, DPYSL2, P = 4.98×10-8) detected in females only. We also observed strong 

genetic correlations of BE/EA with reflux disease in males and obesity in females.  

Conclusions: The identified novel sex-specific variants associated with BE/EA could improve our 

understanding of the genetic architecture of the disease and the reasons for the male predominance.  

 

Keywords: Esophageal adenocarcinoma; Barrett’s esophagus; sex difference; genome-wide association 

study; interaction
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INTRODUCTION 

Esophageal adenocarcinoma (EA) is a highly fatal cancer with increasing incidence in many Western 

populations during the last four decades.1, 2 EA is characterized by a strong male predominance, with a 

male-to-female ratio in incidence of up to 8:1 in the United States.3-5 While much attention has been given 

to the striking increase in EA incidence among white males (10-fold increase since 1973 in the U.S.),6, 7 

EA incidence has also increased among white females such that the sex ratio has remained relatively 

stable over time.2 Males are also more likely than females to develop Barrett’s esophagus (BE), the only 

known premalignant lesion for EA.8  

 

Reasons for the male predominance in BE and EA remain poorly understood, but likely reflects differing 

prevalence of environmental risk factors, sex hormonal and reproductive factors and differing effects of 

underlying susceptibility alleles between males and females.9 Gastroesophageal reflux disease (GERD),10, 

11 obesity,12 and smoking13, 14 are established risk factors for BE and EA. These factors, however, explain 

very little of the sex differences in BE and EA incidence, as their prevalence and effect-size of 

associations with the risk of BE and EA are not dissimilar between sexes.13, 15-20 Previous studies have 

made efforts to evaluate the influence of sex hormonal exposures and reproductive factors on the risk of 

EA.21, 22 However, these studies were limited by small numbers of EA cases in women, inherent 

limitations of observational studies, and thus results to date have been mixed.3  

 

Findings from large genomic studies suggest that sex-specific genetic architecture could contribute to sex 

differences in human disease.23, 24 Although genome-wide association studies (GWAS) have identified 

over 20 susceptibility loci for BE and/or EA,25-28 little is known about whether genetic effects differ 

between males and females. We therefore conducted a sex-specific genome-wide meta-analysis to 

identify sex-specific susceptibility loci for BE and EA.  
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METHODS 

Study population 

We used data from EA cases, BE cases and controls from studies in Europe, North America, and 

Australia, the details of which we have described in full elsewhere.25, 29 Namely, genome-wide genotype 

data were obtained from three GWAS: the international Barrett’s and Esophageal Adenocarcinoma 

Consortium (BEACON; http://beacon.tlvnet.net/), as well as studies from Cambridge (United Kingdom) 

and Bonn (Germany).25, 27, 28, 30 The BEACON GWAS included 1,508 EA cases, 2,406 BE cases, and 

2,177 controls from 15 epidemiologic studies conducted in North America, Western Europe, and 

Australia.27 An additional 4,541 controls from dbGaP (phs000187.v1.p1, phs000196.v2.p1 and 

phs000524.v1.p1) were merged with the BEACON GWAS to increase the statistical power.25 The 

Cambridge studies included 873 BE cases from the UK Barrett's Esophagus Gene Study, 995 EA cases 

from the UK Stomach and Oesophageal Cancer Study, and 3,408 controls from the WTCCC2 including 

the National Blood Service (UKBS) and 1958 birth (58C) studies.25 The Bonn GWAS included 1,609 EA 

cases, 1,037 BE cases, and 3,537 controls.25, 30 All participants were of European ancestry. Patients with 

BE were identified by histopathological diagnosis of intestinal metaplasia, and patients with EA had a 

histopathological diagnosis of adenocarcinoma. Each contributing study complied with their institutional 

review board requirements and all participants gave informed consent. 

 

Genotyping and imputation 

Genotyping of buffy coat or whole blood DNA from all participants was performed on high-density SNP 

arrays (Illumina, San Diego, CA, USA), in accordance with standard quality control (QC) procedures for 

each participating study.25, 31 All genotyped samples and variants met the following inclusion criteria: per 

variant and per sample missingness ≤ 3%; SNPs with a minor allele frequency (MAF) > 1%; SNPs with P 

≥ 0.0001 in controls and P ≥ 5 × 10-10 in BE and EA cases for Hardy-Weinberg equilibrium, no familial 

relationships, extreme heterozygosity rate, or outliers. Sex was confirmed genetically for all subjects as 

part of QC. For the imputation of autosomal chromosomes, we used SHAPEIT version 2.1232, 33 for 

http://beacon.tlvnet.net/
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phasing of the genotyped SNPs and IMPUTE2 version 2.3.134 for imputation of missing SNPs, using the 

1000 Genomes Phase 3 haplotypes (October, 2014 release) as a reference panel.25 An additional flag of -

chrX was added when running imputation for the X chromosome. Post-imputation QC was conducted in 

each study by excluding SNPs with imputation quality score < 0.4 or minor allele count (MAC, 

2*MAF*sample size) < 20.35 We included in the analysis only those SNPs that passed the post-imputation 

QC in all three studies (i.e., BEACON, Cambridge and Bonn).   

 

Genome-wide meta-analysis 

Given the substantial genetic overlap between BE and EA (rg=1.0),25, 36 we performed genetic association 

tests comparing a combined BE and EA case group (‘BE/EA’) with controls to maximize statistical power. 

Sex-stratified logistic regression analyses were conducted separately in the BEACON, Cambridge and 

Bonn datasets using SNPTEST version 2.5.4-beta3,37, 38 adjusted for study-specific top four principal 

components for autosomal chromosomes. Variants were defined as allele dosages based on an additive 

model.25 The X chromosome was analyzed separately using ‘newml’ in SNPTEST.37, 38 We did the sex-

specific meta-analysis with the fixed-effects inverse variance–weighting approach in METAL version 

2011-03-25, and considered a standard genome-wide significance threshold of 5 × 10-8.39 To evaluate the 

independence of associated SNPs with Pmeta < 5 × 10-8 in sex-specific analysis, we performed a stepwise 

selection procedure implemented in GCTA-COJO (GCTA version 1.93.0beta).40 COJO enables 

conditional and joint association analysis using the sex-specific meta-analysis summary statistics. We 

used the BEACON dataset comprising 10,632 participants as the reference data to estimate linkage 

disequilibrium (LD) patterns. Only SNPs with P < 5 × 10-8 in both the sex-specific meta-analysis and the 

conditional analysis were deemed statistically significant and reported.  

 

In addition to the analyses stratified by sex, we examined for SNP-by-sex interactions. We first assessed 

study-specific interactions using SNPTEST version 2.5.4-beta3 with method ‘newml’,  adjusted for study-

specific top four principal components,37, 38 then pooled the study-specific estimates using a joint 2 
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degree-of-freedom (2df) meta-analysis (JMA) of the main SNP effect and the SNP-by-sex interaction 

effect.41 The JMA accounts for the covariance between the SNP regression estimate and the SNP-by-sex 

regression estimate and has greater statistical power than other methods to detect interaction effects.41 

This approach can identify SNPs either having a significant main effect or an interaction effect, or only 

showing significant associations when the interaction effect is considered.  

 

Genomic control correction was applied on all meta-analyses to account for population stratification or 

unaccounted for relatedness. We used quantile-quantile (Q-Q) plots and the genomic inflation factor (λ) 

to detect potential population stratification in each study as well as in the meta-analyses. We used R 3.6.1 

to generate Q-Q and Manhattan plots and LocusZoom version 1.4 to generate regional plots.  

 

Functional annotation 

To explore the biological relevance of identified loci, we performed functional annotation using FUMA 

v1.3.5e.42 All SNPs in LD (at r2 ≥ 0.6) with the significant SNPs, with Pmeta < 0.05 in the sex-specific 

meta-analysis, and with MAF > 0.01 were selected for annotation, which were obtained from ANNOVAR 

categories,43 combined annotation-dependent depletion (CADD) scores44 and RegulomeDB.45 CADD 

score is the score of deleteriousness of SNP predicted by 63 functional annotations with the score > 12.37 

as the threshold to be deleterious and the score > 20 indicating the variant is ranked in the top 1% of 

highest scoring variants.44 RegulomeDB score is a categorical score (ranging from 1a to 7) based on 

expression quantitative trait loci (eQTLs) and chromatin marks. The lower of the RegulomeDB score, the 

more likely it is that the SNP has a regulatory function. We also investigated the biological impact of the 

susceptibility loci using HaploReg v4.146 and Genotype-Tissue Expression (GTEx) v847, 48 for gene-

expression and regulatory data derived from ENCODE, Roadmap projects and other resources. 

 

Gene-based and pathway-enrichment analyses 
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Gene-based analysis was conducted in MAGMA (v1.07) 49 using the per-SNP summary statistics 

obtained from the sex-specific meta-analysis. SNPs were assigned to genes based on their position 

according to the NCBI 37.3 build with no additional boundary placed around the genes. LD between 

SNPs was estimated using reference data from the 1000 Genomes Project Phase 3 European ancestry 

samples. It resulted in 18,856 protein-coding genes (each containing at least one SNP from the meta-

analysis) being tested for males, and 18,863 genes for females. We used a Bonferroni corrected p-value to 

account for multiple comparisons (Pgene < 2.65 × 10-6 [0.05/18,863]). The derived gene-based P values 

were further used for gene-set analysis implemented in MAGMA. Competitive P value for a specific gene 

set was computed for 12,165 predefined gene sets curated from MsigDB (version 7.0),50, 51 considering 

known biological and metabolic pathways from Gene Ontology (9,996 gene sets), BIOCARTA (289 gene 

sets), KEGG (186 gene sets), PID (196 gene sets) and REACTOME (1,499 gene sets). The Bonferroni-

corrected significant threshold for gene-set analysis was set to 0.05/12,165 = 4.11 × 10-6. 

 

Transcriptome-wide association analysis 

We applied metaXcan52 methods to integrate the summary statistics from the sex-specific meta-analysis 

with eQTLs information to map genes whose predicted expression levels in esophageal tissues were 

associated with disease risk. SNP weights and their respective covariance for three relevant esophageal 

tissues (esophagus gastroesophageal junction, esophagus mucosa and esophagus muscularis) were 

obtained from PredictDB Data Repository (http://predictdb.org/) based on GTEx v8 database. The total 

number of genes tested for these tissues were 6,241, 8,448 and 8,160, respectively (total across all tissues, 

22,849). Genes with P < 2.19 × 10-6 (0.05/22,849) were considered to have gene expression profiles 

statistically significantly associated with BE/EA. 

 

Cross-trait genetic correlations 

LD score regression53 was applied to estimate genetic correlations (rg) between BE/EA and a range of 

diseases, disorders and human traits (767 total) based on GWAS summary statistics obtained from 

http://predictdb.org/
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publicly available databases in LD-Hub (http://ldsc.broadinstitute.org/).54 Calculations were conducted 

separately for males and females. The Bonferroni corrected significant threshold was P < 6.52 × 10-5 

(0.05/767). 

  

http://ldsc.broadinstitute.org/
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RESULTS 

Sex-specific susceptibility loci for BE/EA 

The sex-specific meta-analysis included 6,758 male cases (i.e., BE and EA cases combined), 7,489 male 

controls, 1,670 female cases and 6,174 female controls (Supplementary Table 1). In total, 9,353,006 SNPs 

for males and 9,350,284 SNPs for females were tested. The results of the sex-specific meta-analysis are 

summarized in Figure 1. As evidenced by the Q-Q plots (Supplementary Figure 1), there was no evidence 

for hidden substructure or cryptic relatedness in the sex-specific analysis (λ ranged from 1.01 to 1.08).  

 

Table 1 presents the independent loci meeting genome-wide significance in the conditional analysis (Pcojo 

< 5×10-8). In males, we identified three loci independently associated with BE/EA, of which rs35827298 

on chromosome 12p12.3 within MGST1 and LMO3 (Pcojo= 1.28×10-8, P for heterogeneity=0.89, Figure 

2A) was not previously reported in the sex-combined GWAS.25-28 In females, we identified two novel loci 

independently associated with BE/EA: rs13259457 on chromosome 8p23.1 near PRSS55 and RP1L1 

(Pcojo= 6.65×10-9, P for heterogeneity=0.43, Figure 2B), and rs17321041 on chromosome 8p21.2 within 

DPYSL2 (Pcojo= 4.98 ×10-8, P for heterogeneity=0.62, Figure 2C). None of these loci were associated with 

BE/EA risk in the other sex group (P > 0.05) (Table 1). In the interaction analysis, both female-specific 

loci exhibited a strong SNP-by-sex interaction effect (PG×S = 4.25×10-5 and 4.91×10-6 for rs13259457 and 

rs17321041, respectively) but a non-significant SNP main effect (PSNP = 0.22 and 0.71 for rs13259457 

and rs17321041, respectively), though only rs13259457 was statistically significant in the 2df JMA of 

main and interaction effects (PJMA=1.87×10-8 and 3.15×10-7 for rs13259457 and rs17321041, respectively) 

(Table 2). While carrying a rs13259457 G allele was associated with 54% increased risk of BE/EA in 

females, there was no SNP effect in males (P for heterogeneity = 0.003, Supplementary Table 2). Similar 

results were observed for rs17321041 (P for heterogeneity < 0.001, Supplementary Table 2). The 

associations for male-specific loci in the 2df JMA all exhibited significant main effects, which were 

consistent with previous reports.25-28 Besides rs13259457 and rs35827298, we identified six other 
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statistically significantly associated loci in the 2df JMA of main and interaction effects (Supplementary 

Table 3), all of which have been previously reported in the sex-combined GWAS.25-28  

 

Functional annotation 

In FUMA, most of the SNPs in the susceptibility loci were intronic or intergenic (Supplementary Table 4). 

Twenty-two SNPs in males were predicted to be potential deleterious variants (CADD score > 12.37), 

with the highest probability of a deleterious protein effect observed for rs6938505 (CADD score = 21.2), 

a proxy of the SNP rs12660153 (P = 4.42 ×10-8, r2 = 0.68) in males. Using HaploReg v4.1 database, the 

three newly identified SNPs all mapped to a regulatory region, showing evidence of transcription factor 

biding sites and effects on regions marked by histone modifications within promotor and/or enhancer and 

by DNAse hypersensitivity (Supplementary Table 5). From the eQTL analyses, we found that rs35827298, 

rs13259457 and 17321041 regulated the expression of several genes in various tissues, including the 

genes previously reported to be associated with the risk of BE and EA, such as MGST155 (rs35827298, P 

= 4.5×10-5) (Supplementary Table 5). Specifically, rs17321041 was cis-eQTL of SDAD1P1 and PNMA2 

in the three esophageal relevant tissues (esophagus gastroesophageal junction, esophagus mucosa and 

esophagus muscularis) with P ranging from 6.5×10-5 to 7.9×10-9.  

 

Implicated genes and pathways 

Gene-based analysis in MAGMA identified seven genes in males (TPPP, MGST1, ALDH1A2, KLHL26, 

SLC22A3, ISL1 and CRTC1) and three in females (TENM4, BLK and MSRA) associated with BE/EA 

(Supplementary Table 6). Among them, MGST1 (Pgene = 3.79 × 10-7), KLHL26 (Pgene = 1.39 × 10-6), 

SLC22A3 (Pgene = 1.89 × 10-6), ISL1 (Pgene = 1.84 × 10-6) and TENM4 (Pgene = 5.36 × 10-7) were not 

previously reported in the sex-combined GWAS.25-28 While one gene (SLC9A3) that was not identified in 

MAGMA gene-based analysis was significantly associated with BE/ EA in esophageal tissues in males 

(Pgene = 1.19× 10-6) in metaXcan, there were no additional genes identified for females.  
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In the MAGMA gene-set analysis, no pathways were significantly associated with BE/EA risk after 

Bonferroni correction (P < 4.11 × 10-6); however, the most significant pathways were different between 

males and females (top 10 listed in Supplementary Table 7). In males, the most significant pathways were 

observed for homologous recombination (P = 2.08 × 10-5) and response to vitamin A (P = 5.21 × 10-5). In 

females, regulation of coagulation exhibited the strongest association (P = 3.27 × 10-5). 

 

Cross-trait associations 

Using LD score regression, we observed significant rg of BE/EA with GERD (rg = 0.701, P = 1.43×10-7), 

hiatus hernia (rg = 0.748, P = 1.96×10-6), and taking medication for heartburn (rg = 0.473, P = 2.19×10-5) in 

males. In females, the most highly correlated trait was fat percentage, though fat percentage and other 

traits were not significantly associated with BE/EA in females after Bonferroni correction (P < 6.52 × 10-

5). Supplementary Table 8 lists those traits that had genetic correlations with BE/EA at a false discovery 

rate < 0.05.  
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DISCUSSION 

EA is characterized by a striking male predominance. While the reasons for this male predominance are 

not yet fully understood, it appears unlikely to be explained by differences between males and females in 

the prevalence of established risk factors. This study was the first attempt to scan sex-specific genetic 

associations with the risk of EA and its precursor lesion, BE, with the aim of assessing whether sex-

specific genetic architecture could contribute to sex differences in BE/EA. We identified two female-

specific independent loci located in PRSS55-RP1L1 (rs13259457 at 8p23.1) and DPYSL2 (rs17321041 at 

8p21.2), and three male-specific independent loci located in KHDRBS2-MTRNR2L9 (rs112894788 at 

6q11.1), MGST1-LMO (rs35827298 at 12p12.3) and CRTC1 (rs2003476 at 19p13.11) associated with risk 

of BE/EA. Three of these loci (8p23.1, 8p21.2 and 12p12.3) were not identified in previous BE/EA 

GWASs, which pooled together males and females.25-28 

 

SNP rs13259457 lies ~23kb downstream of PRSS55 (serine protease 55) and ~28kb downstream of 

RP1L1 (retinitis pigmentosa-1-like 1). PRSS55, also known as TSP1 (thrombospondin 1), encodes a 

secreted protein that possesses important biological functions in tumorigenesis and metastasis.56-58 

Secreted TSP1 from esophageal cancer cells is mediated by Rab37 to inhibit p-FAK/p-paxillin/p-ERK 

migration signaling and promotes the neovasculature of tumor microenvironment and tumor 

progression.59 Studies have shown that TSP1 was upregulated in the metaplasia-dysplasia-EA sequence in 

150 micro-dissected esophageal stroma.60 Furthermore, an expression analysis in a cohort of BE patients 

showed that increased expression of TSP1 was associated with almost 4-fold higher risk of progression to 

EA and poorer survival outcomes in patients with EA.60 The associations between RP1L1 and cancer are 

largely unknown. Limited studies have reported RP1L1 mutations in gastric cancer,61 and linked RP1L1 

mutations with dopamine-agonist resistance in prolactinoma.62  Of interest, rs13259457 exhibited strong 

interactions with sex, with the effects of risk allele G on BE and EA significantly different by sex. The 

biological mechanism needs further investigation.  
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SNP rs17321041 is an intronic variant of DPYSL2 (dihydropyrimidinase like 2), also known as CRMP2 

(collapsin response mediator protein-2), a gene that encodes a multifunctional adaptor protein that 

promotes microtubule assembly.63 CRMP2 expressed in tumor tissues and its phosphorylation induced by 

CDK5 has been observed in the nuclei of tumor cells.64 CRMP2 interacts with neurofibromatosis type 1 

(Nf1), a tumor suppressor gene that produces neurofibromin functioning as a negative regulator of Ras.65 

Expression and phosphorylation of CRMP2 and CRMP2-neurofibromin interaction have been further 

linked to cancer proliferation and progression, including breast,66 glioma,67 lung,68 and lymphoma.64 In 

addition, rs17321041 was recently reported to be associated with diastolic blood pressure by GWAS,69 

suggesting potential shared genetic predisposition between BE/EA and hypertension as they have 

common risk factors (i.e., obesity). eQTL analysis showed that rs17321041 is cis-eQTL of PNMA2 

(paraneoplastic antigen Ma2) in esophageal tissues. The functions of PNMA2 are not clear. Limited 

evidence have indicated its role in tumorigenesis, and reported PNMA2 expression could be a biomarker 

for gastrointestinal neuroendocrine carcinomas and small intestine neuroendocrine tumors.70, 71  

 

SNP rs35827298 is located ~50kb downstream from MGST1 (microsomal glutathione S-transferase 1) 

and 133kb downstream from LMO3 (LIM domain only 3), and acts as a cis-eQTL of MGST1. MGST1 is a 

member of the superfamily of membrane-associated proteins in eicosanoid and glutathione metabolism 

(MAPEG). MGST1 encodes a protein localized to the endoplasmic reticulum and outer mitochondrial 

membrane that is responsible for detoxifying electrophilic xenobiotics and neutralizing oxidative stress.72, 

73 Previous studies have shown that MGST1 is upregulated in various cancer types, such as lung, prostate, 

brain and colorectal,73 and linked its expression to tumorigenesis and apoptosis.74 Recently, Buas and 

colleagues investigated genetic variation in inflammation-related pathways and found that MGST1 

variants were associated with increased risk of BE and EA in European populations.55 LMO members are 

important regulators in cell fate determination and differentiation. The oncogenic role of LMO3 was first 

described in neuroblastoma, where LMO3 deregulated expression was associated with genesis and 

progression of neuroblastoma.75 Since then, increasing evidence suggests that LMO3 could promote 

https://www.ncbi.nlm.nih.gov/gene/1808
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cancer cell proliferation, invasion and metastasis in hepatocellular carcinoma76, gastric cancer,77 clear cell 

renal cell carcinoma,78 and lung cancer.79 These oncogenic roles may be due to the interactions between 

LMO3 and p53,80 HEN2,81 LATS176 or microRNAs.79 

 

Gene-based and enrichment analysis implicated additional genes associated with BE/EA, including 

SLC22A3, SLC9A3 and ISL1. Both SLC22A3 (solute carrier family 22 member 3) and SLC9A3 (solute 

carrier family 9 member A3) belong to the solute carrier superfamily and were recently reported to be 

candidate genes of BE and EA in a study investigating eQTLs in esophageal tissues.82 In addition, 

downregulation of SLC22A3 (solute carrier family 22 member 3) could drive early tumor invasion and 

metastasis in familial esophageal cancer.83 ISL1 (LIM homeobox 1) encodes LIM-homeodomain 

transcription factor and promotes tumor progression in multiple cancer types, such as gastric and breast.84, 

85 A recent GWAS of smoking status also implicated ISL1, suggesting ISL1 may be a common 

susceptibility gene between BE/EA and their risk factor, smoking.86  

 

Strengths of the current study include the advantage of large worldwide consortium of BE and EA with 

high-quality case-control and cohort parent studies, providing us with a rare opportunity to perform the 

first-ever genome-wide sex-specific analysis for BE and EA. Our comprehensive downstream analysis 

revealed the shared genetic predisposition between BE/EA and their established risk factors (i.e., smoking, 

obesity). Our evaluation of genetic correlations between BE/EA and other phenotypes highlighted overlap 

with GERD in males and obesity in females. A recent study that investigated shared genetic components 

of obesity-related traits and BE/EA also revealed strong genetic correlation for BMI only in females.87 

These findings may provide valuable additional clues regarding male predominance of BE and EA, and 

provide sex-specific early detection and treatment strategy. Our study has several limitations. First, our 

sample size may not provide sufficient power for genome-wide interaction analysis. Therefore, we 

applied joint meta-analysis of SNP main and SNP-by-sex interaction. This method could provide optimal 

statistical power.41, 88, 89 Second, we do not have data of sex hormone exposure. It is possible that genetic 
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variants interacted with sex hormonal factors to confer the risk of BE/EA differently between sex groups. 

Third, although we conducted extensive functional prediction for the identified variants, validation of 

these biological functions in cell lines and animal models are lacking. Further experimental studies are 

needed to reveal the underling biological mechanisms. In addition, we focused on common genetic 

variation (MAF>1%) represented on genotyping platforms which often exhibit moderate genetic effects. 

Further large-scale studies based on whole-exome or whole-genome sequencing would be required to 

identify additional sex-specific associations with rare variants.  

 

In conclusion, our meta-analysis identified three novel loci associated with the risk of BE/EA in a sex-

dependent manner. This finding warrants further mechanistic investigations to how these variants 

influence the sex differences in BE/EA, and their interaction with other factors the differed by sex (e.g., 

sexual hormone and immune responses90). The identified sex-specific genetic determinants of BE and EA 

may further guide risk prediction for these diseases specifically targeted for males and females.  
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