122 research outputs found

    Higher-order functional connectivity analysis of resting-state functional magnetic resonance imaging data using multivariate cumulants

    Get PDF
    Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most common modality to study functional connectivity in the human brain. Most research to date has focused on connectivity between pairs of brain regions. However, attention has recently turned towards connectivity involving more than two regions, that is, higher-order connectivity. It is not yet clear how higher-order connectivity can best be quantified. The measures that are currently in use cannot distinguish between pairwise (i.e., second-order) and higher-order connectivity. We show that genuine higher-order connectivity can be quantified by using multivariate cumulants. We explore the use of multivariate cumulants for quantifying higher-order connectivity and the performance of block bootstrapping for statistical inference. In particular, we formulate a generative model for fMRI signals exhibiting higher-order connectivity and use it to assess bias, standard errors, and detection probabilities. Application to resting-state fMRI data from the Human Connectome Project demonstrates that spontaneous fMRI signals are organized into higher-order networks that are distinct from second-order resting-state networks. Application to a clinical cohort of patients with multiple sclerosis further demonstrates that cumulants can be used to classify disease groups and explain behavioral variability. Hence, we present a novel framework to reliably estimate genuine higher-order connectivity in fMRI data which can be used for constructing hyperedges, and finally, which can readily be applied to fMRI data from populations with neuropsychiatric disease or cognitive neuroscientific experiments.</p

    Loss of ‘Small-World’ Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity

    Get PDF
    BACKGROUND: Local network connectivity disruptions in Alzheimer's disease patients have been found using graph analysis in BOLD fMRI. Other studies using MEG and cortical thickness measures, however, show more global long distance connectivity changes, both in functional and structural imaging data. The form and role of functional connectivity changes thus remains ambiguous. The current study shows more conclusive data on connectivity changes in early AD using graph analysis on resting-state condition fMRI data. METHODOLOGY/PRINCIPAL FINDINGS: 18 mild AD patients and 21 healthy age-matched control subjects without memory complaints were investigated in resting-state condition with MRI at 1.5 Tesla. Functional coupling between brain regions was calculated on the basis of pair-wise synchronizations between regional time-series. Local (cluster coefficient) and global (path length) network measures were quantitatively defined. Compared to controls, the characteristic path length of AD functional networks is closer to the theoretical values of random networks, while no significant differences were found in cluster coefficient. The whole-brain average synchronization does not differ between Alzheimer and healthy control groups. Post-hoc analysis of the regional synchronization reveals increased AD synchronization involving the frontal cortices and generalized decreases located at the parietal and occipital regions. This effectively translates in a global reduction of functional long-distance links between frontal and caudal brain regions. CONCLUSIONS/SIGNIFICANCE: We present evidence of AD-induced changes in global brain functional connectivity specifically affecting long-distance connectivity. This finding is highly relevant for it supports the anterior-posterior disconnection theory and its role in AD. Our results can be interpreted as reflecting the randomization of the brain functional networks in AD, further suggesting a loss of global information integration in disease

    A randomized trial predicting response to cognitive rehabilitation in multiple sclerosis:Is there a window of opportunity?

    Get PDF
    BACKGROUND: Cognitive training elicits mild-to-moderate improvements in cognitive functioning in people with multiple sclerosis (PwMS), although response heterogeneity limits overall effectiveness. OBJECTIVE: To identify patient characteristics associated with response and non-response to cognitive training. METHODS: Eighty-two PwMS were randomized into a 7-week attention training (n = 58, age = 48.4 ± 10.2 years) or a waiting-list control group (n = 24, age = 48.5 ± 9.4 years). Structural and functional magnetic resonance imaging (MRI) was obtained at baseline and post-intervention. Twenty-one healthy controls (HCs, age = 50.27 ± 10.15 years) were included at baseline. Responders were defined with a reliable change index of 1.64 on at least 2/6 cognitive domains. General linear models and logistic regression were applied. RESULTS: Responders (n = 36) and non-responders (n = 22) did not differ on demographics, clinical variables and baseline cognition and structural MRI. However, non-responders exhibited a higher baseline functional connectivity (FC) between the default-mode network (DMN) and the ventral attention network (VAN), compared with responders (p = 0.018) and HCs (p = 0.001). Conversely, responders exhibited no significant baseline differences in FC compared with HCs. Response to cognitive training was predicted by lower DMN-VAN FC (p = 0.004) and DMN-frontoparietal FC (p = 0.029) (Nagelkerke R(2) = 0.25). CONCLUSION: An intact pre-intervention FC is associated with cognitive training responsivity in pwMS, suggesting a window of opportunity for successful cognitive interventions

    A more unstable resting-state functional network in cognitively declining multiple sclerosis

    Get PDF
    Cognitive impairment is common in people with multiple sclerosis and strongly affects their daily functioning. Reports have linked disturbed cognitive functioning in multiple sclerosis to changes in the organization of the functional network. In a healthy brain, communication between brain regions and which network a region belongs to is continuously and dynamically adapted to enable adequate cognitive function. However, this dynamic network adaptation has not been investigated in multiple sclerosis, and longitudinal network data remain particularly rare. Therefore, the aim of this study was to longitudinally identify patterns of dynamic network reconfigurations that are related to the worsening of cognitive decline in multiple sclerosis. Resting-state functional MRI and cognitive scores (expanded Brief Repeatable Battery of Neuropsychological tests) were acquired in 230 patients with multiple sclerosis and 59 matched healthy controls, at baseline (mean disease duration: 15 years) and at 5-year follow-up. A sliding-window approach was used for functional MRI analyses, where brain regions were dynamically assigned to one of seven literature-based subnetworks. Dynamic reconfigurations of subnetworks were characterized using measures of promiscuity (number of subnetworks switched to), flexibility (number of switches), cohesion (mutual switches) and disjointedness (independent switches). Cross-sectional differences between cognitive groups and longitudinal changes were assessed, as well as relations with structural damage and performance on specific cognitive domains. At baseline, 23% of patients were cognitively impaired (≥2/7 domains Z < -2) and 18% were mildly impaired (≥2/7 domains Z < -1.5). Longitudinally, 28% of patients declined over time (0.25 yearly change on ≥2/7 domains based on reliable change index). Cognitively impaired patients displayed more dynamic network reconfigurations across the whole brain compared with cognitively preserved patients and controls, i.e. showing higher promiscuity (P = 0.047), flexibility (P = 0.008) and cohesion (P = 0.008). Over time, cognitively declining patients showed a further increase in cohesion (P = 0.004), which was not seen in stable patients (P = 0.544). More cohesion was related to more severe structural damage (average r = 0.166, P = 0.015) and worse verbal memory (r = -0.156, P = 0.022), information processing speed (r = -0.202, P = 0.003) and working memory (r = -0.163, P = 0.017). Cognitively impaired multiple sclerosis patients exhibited a more unstable network reconfiguration compared to preserved patients, i.e. brain regions switched between subnetworks more often, which was related to structural damage. This shift to more unstable network reconfigurations was also demonstrated longitudinally in patients that showed cognitive decline only. These results indicate the potential relevance of a progressive destabilization of network topology for understanding cognitive decline in multiple sclerosis

    Exploring the effects of extended interval dosing of natalizumab and drug concentrations on brain atrophy in multiple sclerosis

    Get PDF
    BACKGROUND: Extended interval dosing (EID) of natalizumab treatment is increasingly used in multiple sclerosis. Besides the clear anti-inflammatory effect, natalizumab is considered to have neuroprotective properties as well. OBJECTIVES: This study aimed to study the longitudinal effects of EID compared to standard interval dosing (SID) and natalizumab drug concentrations on brain atrophy. METHODS: Patients receiving EID or SID of natalizumab with a minimum radiological follow-up of 2 years were included. Changes in brain atrophy measures over time were derived from clinical routine 3D-Fluid Attenuated Inversion Recovery (FLAIR)-weighted magnetic resonance imaging (MRI) scans using SynthSeg. RESULTS: We found no differences between EID (n = 32) and SID (n = 50) for whole brain (-0.21% vs -0.16%, p = 0.42), ventricular (1.84% vs 1.13%, p = 0.24), and thalamic (-0.32% vs -0.32%, p = 0.97) annualized volume change over a median follow-up of 3.2 years. No associations between natalizumab drug concentration and brain atrophy rate were found. CONCLUSION: We found no clear evidence that EID compared to SID or lower natalizumab drug concentrations have a negative impact on the development of brain atrophy over time

    Serum glial fibrillary acidic protein in natalizumab-treated relapsing-remitting multiple sclerosis: An alternative to neurofilament light

    Get PDF
    BACKGROUND: There is a need in Relapsing-Remitting Multiple Sclerosis (RRMS) treatment for biomarkers that monitor neuroinflammation, neurodegeneration, treatment response, and disease progression despite treatment. OBJECTIVE: To assess the value of serum glial fibrillary acidic protein (sGFAP) as a biomarker for clinical disease progression and brain volume measurements in natalizumab-treated RRMS patients. METHODS: sGFAP and neurofilament light (sNfL) were measured in an observational cohort of natalizumab-treated RRMS patients at baseline, +3, +12, and +24 months and at the last sample follow-up (median 5.17 years). sGFAP was compared between significant clinical progressors and non-progressors and related to magnetic resonance imaging (MRI)-derived volumes of the whole brain, ventricle, thalamus, and lesion. The relationship between sGFAP and sNfL was assessed. RESULTS: sGFAP and neurofilament light (sNfL) were measured in an observational cohort of natalizumab-treated RRMS patients at baseline, +3, +12, and +24 months and at the last sample follow-up (median 5.17 years). sGFAP was compared between significant clinical progressors and non-progressors and related to magnetic resonance imaging (MRI)-derived volumes of the whole brain, ventricle, thalamus, and lesion. The relationship between sGFAP and sNfL was assessed. DISCUSSION: sGFAP levels related to MRI markers of neuroinflammation and neurodegeneration

    Dysfunction in Early Multiple Sclerosis: Altered Centrality Derived from Resting-State Functional Connectivity Using Magneto-Encephalography

    Get PDF
    BACKGROUND: Cognitive dysfunction in multiple sclerosis (MS) is frequent. Insight into underlying mechanisms would help to develop therapeutic strategies. OBJECTIVE: To explore the relationship of cognitive performance to patterns of nodal centrality derived from magneto-encephalography (MEG). METHODS: 34 early relapsing-remitting MS patients (median EDSS 2.0) and 28 age- and gender-matched healthy controls (HC) had a MEG, a neuropsychological assessment and structural MRI. Resting-state functional connectivity was determined by the synchronization likelihood. Eigenvector Centrality (EC) was used to quantify for each sensor its connectivity and importance within the network. A cognition-score was calculated, and normalized grey and white matter volumes were determined. EC was compared per sensor and frequency band between groups using permutation testing, and related to cognition. RESULTS: Patients had lower grey and white matter volumes than HC, male patients lower cognitive performance than female patients. In HC, EC distribution showed highest nodal centrality over bi-parietal sensors ("hubs"). In patients, nodal centrality was even higher bi-parietally (theta-band) but markedly lower left temporally (upper alpha- and beta-band). Lower cognitive performance correlated to decreased nodal centrality over left temporal (lower alpha-band) and right temporal (beta-band) sensors, and to increased nodal centrality over right parieto-temporal sensors (beta-band). Network changes were most pronounced in male patients. CONCLUSIONS: Partial functional disconnection of the temporal regions was associated with cognitive dysfunction in MS; increased centrality in parietal hubs may reflect a shift from temporal to possibly less efficient parietal processing. To better understand patterns and dynamics of these network changes, longitudinal studies are warranted, also addressing the influence of gender

    No Plasmatic Proteomic Signature at Clinical Disease Onset Associated With 11 Year Clinical, Cognitive and MRI Outcomes in Relapsing-Remitting Multiple Sclerosis Patients

    Get PDF
    Background: The clinical course of relapsing-remitting multiple sclerosis (RRMS) is highly heterogeneous and prognostic biomarkers at time of diagnosis are lacking.Objective: We investigated the predictive value of the plasma proteome at time of diagnosis in RRMS patients.Methods: The plasma proteome was interrogated using a novel aptamer-based proteomics platform, which allows to measure the levels of a predefined set of 1310 proteins.Results: In 67 clinically and radiologically well characterized RRMS patients, we found no association between the plasma proteome at diagnosis and clinical, cognitive or MRI outcomes after 11 years.Conclusions: Proteomics studies on cerebrospinal fluid may be better suited to identify prognostic biomarkers in early RRMS

    Diffusion-based structural connectivity patterns of multiple sclerosis phenotypes

    Get PDF
    BACKGROUND: We aimed to describe the severity of the changes in brain diffusion-based connectivity as multiple sclerosis (MS) progresses and the microstructural characteristics of these networks that are associated with distinct MS phenotypes. METHODS: Clinical information and brain MRIs were collected from 221 healthy individuals and 823 people with MS at 8 MAGNIMS centres. The patients were divided into four clinical phenotypes: clinically isolated syndrome, relapsing-remitting, secondary progressive and primary progressive. Advanced tractography methods were used to obtain connectivity matrices. Then, differences in whole-brain and nodal graph-derived measures, and in the fractional anisotropy of connections between groups were analysed. Support vector machine algorithms were used to classify groups. RESULTS: Clinically isolated syndrome and relapsing-remitting patients shared similar network changes relative to controls. However, most global and local network properties differed in secondary progressive patients compared with the other groups, with lower fractional anisotropy in most connections. Primary progressive participants had fewer differences in global and local graph measures compared with clinically isolated syndrome and relapsing-remitting patients, and reductions in fractional anisotropy were only evident for a few connections. The accuracy of support vector machine to discriminate patients from healthy controls based on connection was 81%, and ranged between 64% and 74% in distinguishing among the clinical phenotypes. CONCLUSIONS: In conclusion, brain connectivity is disrupted in MS and has differential patterns according to the phenotype. Secondary progressive is associated with more widespread changes in connectivity. Additionally, classification tasks can distinguish between MS types, with subcortical connections being the most important factor

    Paramagnetic rims are a promising diagnostic imaging biomarker in multiple sclerosis

    Get PDF
    Background: White matter lesions (WMLs) on brain magnetic resonance imaging (MRI) in multiple sclerosis (MS) may contribute to misdiagnosis. In chronic active lesions, peripheral iron-laden macrophages appear as paramagnetic rim lesions (PRLs). Objective: To evaluate the sensitivity and specificity of PRLs in differentiating MS from mimics using clinical 3T MRI scanners. Method: This retrospective international study reviewed MRI scans of patients with MS (n = 254), MS mimics (n = 91) and older healthy controls (n = 217). WMLs, detected using fluid-attenuated inversion recovery MRI, were analysed with phase-sensitive imaging. Sensitivity and specificity were assessed for PRLs. Results: At least one PRL was found in 22.9% of MS and 26.1% of clinically isolated syndrome (CIS) patients. Only one PRL was found elsewhere. The identification of ⩾1 PRL was the optimal cut-off and had high specificity (99.7%, confidence interval (CI) = 98.20%–99.99%) when distinguishing MS and CIS from mimics and healthy controls, but lower sensitivity (24.0%, CI = 18.9%–36.6%). All patients with a PRL showing a central vein sign (CVS) in the same lesion (n = 54) had MS or CIS, giving a specificity of 100% (CI = 98.8%–100.0%) but equally low sensitivity (21.3%, CI = 16.4%–26.81%) Conclusion: PRLs may reduce diagnostic uncertainty in MS by being a highly specific imaging diagnostic biomarker, especially when used in conjunction with the CVS
    • …
    corecore