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Abstract

Blood-level oxygenation-dependent (BOLD) functional magnetic resonance imaging

(fMRI) is the most common modality to study functional connectivity in the human

brain. Most research to date has focused on connectivity between pairs of brain

regions. However, attention has recently turned towards connectivity involving more

than two regions, that is, higher-order connectivity. It is not yet clear how higher-

order connectivity can best be quantified. The measures that are currently in use can-

not distinguish between pairwise (i.e., second-order) and higher-order connectivity.

We show that genuine higher-order connectivity can be quantified by using multi-

variate cumulants. We explore the use of multivariate cumulants for quantifying

higher-order connectivity and the performance of block bootstrapping for statistical

inference. In particular, we formulate a generative model for fMRI signals exhibiting

higher-order connectivity and use it to assess bias, standard errors, and detection

probabilities. Application to resting-state fMRI data from the Human Connectome

Project demonstrates that spontaneous fMRI signals are organized into higher-

order networks that are distinct from second-order resting-state networks. Applica-

tion to a clinical cohort of patients with multiple sclerosis further demonstrates that

cumulants can be used to classify disease groups and explain behavioral variability.

Hence, we present a novel framework to reliably estimate genuine higher-order

connectivity in fMRI data which can be used for constructing hyperedges, and

finally, which can readily be applied to fMRI data from populations with neuropsy-

chiatric disease or cognitive neuroscientific experiments.
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1 | INTRODUCTION

The term functional connectivity refers to the statistical relationship

between signals measured at different locations within the brain

(Friston, 1994). Functional connectivity in resting-state fMRI data is

usually quantified by the Pearson correlation and has provided many

insights about the large-scale neuronal processes underlying cognition

and its disturbances in clinical conditions (Bullmore, 2012; Fox &

Greicius, 2010; Smith et al., 2013; van den Heuvel & Hulshoff

Pol, 2010). However, studies on functional connectivity of resting-

state fMRI data have almost exclusively focused on connectivity

between pairs of brain regions (i.e., second-order functional connec-

tivity). In particular, network analyses, such as those based on graph-

theory, are only able to capture second-order connectivity. Many

complex systems, however, exhibit higher-order connectivity, that is,

connectivity between more than two regions, and this can lead to

new kinds of collective behavior such as explosive phase-transitions

(Battiston et al., 2020; Battiston et al., 2021). It is therefore of interest

to know if higher-order connectivity is present in resting-state fMRI

data, how it is best quantified, and if it can explain behavioral variabil-

ity in addition to second-order connectivity. The current study

focuses on these questions.

A number of recent studies have investigated higher-order con-

nectivity in the human brain using resting-state fMRI. The most com-

monly used measure for higher-order connectivity is the edge

connectivity (Faskowitz et al., 2020), which is defined as the Pearson

correlation between two edge time-series. Edge time-series correspond

to unordered pairs of brain regions and are calculated by taking the

instantaneous product of the fMRI signals of these regions. Thus,

edge connectivity measures the correlation between two pairs of

brain regions. It has been applied to study higher-order connectivity

between cortical and sub-cortical structures (Chumin et al., 2022;

Korponay & Ph, 2022) and in several clinical populations, including

autism spectrum disorder (Esfahlani et al., 2022; Li et al., 2022), audi-

tory processing disorder (Alvand et al., 2022), and stroke patients

(Idesis et al., 2022). A related, but more general measure for

higher-order connectivity, was introduced in (Santoro et al., 2022) and

quantifies the strength of the connectivity between k brain regions

(i.e., k-th order connectivity) for k<2. Another way of measuring

higher-order connectivity is based on multivariate information theory,

which deals with the quantification and analysis of the relationships

between multiple variables (Timme et al., 2014) and has been used,

for instance, to study ageing (Gatica et al., 2021) and neurodegenera-

tion (Herzog et al., 2022). From an information-theoretic perspective,

higher-order connectivity is related to the concept of synergy and

contrasts the idea that brain regions independently contribute to

overall function. Studying synergy in fMRI may provide valuable

insights into how different brain regions interact and work together to

support various cognitive and complex functions (Herzog et al., 2022;

Luppi, Mediano, Rosas, Holland, Fryer, Brien, et al., 2022).

A drawback of the above mentioned measures of higher-order

connectivity is that they do not provide information about whether

observed higher-order connectivity can be reduced to pairwise con-

nectivity of the participating brain regions. For example, for Gaussian

fMRI signals, the edge connectivity (Faskowitz et al., 2020) can be

expressed in terms of the pairwise correlations between the four par-

ticipating regions, and as such, is not genuinely of higher-order. This

has been pointed out recently, as Novelli and Razi (Novelli &

Razi, 2022) compared edge connectivity networks of resting-state

fMRI signals considered in (Faskowitz et al., 2020) with those

obtained under the Gaussian assumption and found that the networks

were highly similar. This implies that the observed edge connectivity

networks in (Faskowitz et al., 2020) can largely, if not entirely, be

explained by pairwise correlations.

More generally, for Gaussian signals, any higher-order connectiv-

ity measure can be expressed in terms of pairwise correlations. Since

fMRI signals are approximately Gaussian (Hlinka et al., 2011), this

raises the question if higher-order connectivity measures provide any

information that is not already contained in the pairwise correlations.

Addressing this question requires the use of higher-order connectivity

measures that vanish for Gaussian signals. We will refer to measures

with this property as non-redundant. In (Novelli & Razi, 2022) it is

shown that a non-redundant measure of edge connectivity can be

obtained by subtracting the Gaussian part from the edge connectivity.

A less ad hoc way of measuring non-redundant higher-order connec-

tivity is by using multivariate cumulants. Multivariate cumulants char-

acterize the higher-order correlation structure in multivariate data in a

non-redundant way by subtracting the Gaussian parts of higher-order

multivariate moments. They have been used extensively for analyzing

higher-order correlations in neural spiking activity (Martignon

et al., 2000; Yu et al., 2011). In the current study, we explore the use

of multivariate cumulants to detect and characterize non-redundant

higher-order connectivity in resting-state fMRI data.

Although non-redundant higher-order connectivity measures van-

ish for Gaussian data, their sampling variability requires the use of sta-

tistical methods to confirm the presence of higher-order connectivity

in practical applications. For example, although edge connectivity net-

works and their Gaussian parts were observed to be highly similar

(Novelli & Razi, 2022), to conclude that edge networks are in fact

redundant requires proper statistical testing. Although this issue has

been acknowledged in the neuroimaging community (Jo et al., 2021),

there is currently no consensus on how statistical inference is best

carried out. The main challenge is that the sampling and null distribu-

tions of higher-order connectivity measures are generally unknown

(due to the presence of auto-correlations in fMRI signals) and cannot

be approximated by independent bootstrapping methods (Efron &

Tibshirani, 1986). This is particularly problematic when analyzing fMRI

data from a single condition (e.g., resting-state) because the absence

of a contrasting condition prevents the use of permutation tech-

niques. In previous studies, different types of randomized data were

used and this has led to some discussion about which type of random-

ization is most appropriate (Betzel et al., 2022; Jo et al., 2021).

We clarify this issue by making explicit the null hypotheses that

correspond to different types of randomized data. In the current
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study, we explore the use of block bootstrapping (Kreiss &

Paparoditis, 2011; Kunsch, 1989) for assessing higher-order connec-

tivity in resting-state fMRI data and compare it to null-data obtained

using coherent phase-randomization (Prichard & Theiler, 1994). The

advantage of bootstrapping techniques over null-data is that boot-

strapping allows to quantify the level of statistical uncertainty in the

connectivity estimates, for example by constructing confidence inter-

vals. Furthermore, as discussed in Section 2.2.2 in more detail, it is

challenging to construct null-data that allows testing the intended

null-hypothesis. In contrast, the sampling distributions obtained from

bootstrapping can directly be used to test the null-hypothesis of no

(higher-order) connectivity.

For practical applications of higher-order connectivity measures,

it is useful to know how these measures, as well as the used statistical

inference methods, perform with respect to experimental variables

such as scanning duration and physiological properties such as true

connectivity strengths. These questions can be addressed by using

synthetic multivariate fMRI signals. Such signals need to possess the

following three properties. First, since genuine higher-order connec-

tivity can only be present in non-Gaussian signals, the synthetic sig-

nals need to be non-Gaussian. Second, the connectivity measure that

is of interest can be expressed in terms of the parameters of the gen-

erative model. If such an expression is not available, the ground truth

with which to compare the analysis results is unknown. Third, the syn-

thetic signals need to have auto-correlation functions that resemble

those of fMRI signals. Without this last property, no conclusions can

be drawn about the dependence of performance on scanning

duration. In the current study, we use a non-Gaussian multivariate

auto-regressive process to generate synthetic fMRI signals. This is an

ordinary multivariate auto-regressive process that is driven both by

Gaussian and non-Gaussian noise. The auto-regressive term intro-

duces auto-correlations in the synthetic signals, whereas the non-

Gaussian noise introduces higher-order connectivity. We derive

closed-form expressions for multivariate cumulants and edge connec-

tivity and use them to assess the performance of these measures and

the randomization methods.

We apply the methodology to resting-state BOLD-fMRI data

from the Human Connectome Project (HCP) (Glasser et al., 2013;

Glasser, Smith, et al., 2016) and to a clinical cohort of patients suffer-

ing from multiple sclerosis (MS). MS is a neuroinflammatory and neu-

rodegenerative disorder of the central nervous system that leads to

physical disability and cognitive deterioration strongly affecting day-

to-day life (Grzegorski & Losy, 2017). Even though white matter

lesions are diagnostic hallmarks of MS, their correlation with cognitive

impairment is not clear-cut (Barkhof, 2002). Disease-related damage

to structural pathways has been postulated to induce functional

reorganization, particularly involving connections between the

default-mode network (DMN) and the rest of the brain (i.e., extra-

DMN connectivity) (Meijer et al., 2017; Schoonheim et al., 2022).

Interestingly, communication between brain regions that are not

directly anatomically connected might be more adequately captured

using measures that capture how information from multiple brain

regions is integrated (Luppi, Mediano, Rosas, Holland, Fryer, Brien,

et al., 2022). This is why people with MS may provide a good show-

case of the potential clinical relevance of higher-order connectivity in

a clinical sample. Our hypothesis is that higher-order extra-DMN con-

nectivity is increased in people with MS who show cognitive

impairment.

2 | METHODS

2.1 | Theory

2.1.1 | Multivariate moments of fMRI signals

In this section, we discuss multivariate moments and interpret them in

the context of fMRI signal analysis. With every set of k ≥2 fMRI sig-

nals, we associate a real number referred to as the k-th order moment

of the set of signals, which quantifies the extent to which the signals

co-fluctuate. The second-order moment of two signals is equal to the

covariance between the signals and hence the k-th order moment can

be viewed as a generalization of the covariance to k signals. Moments

of order larger than two are referred to as higher-order. By appropriate

normalization, the k-order moment becomes the k-th order correlation.

It generalizes the correlation from two to k signals. However, in

Section 2.1.3 we discuss that although the k-order correlation might

be an interesting measure for fMRI signal analysis, it does not neces-

sarily vanish if one of the k signals is statistically independent of the

other k�1 signals and, in this sense, is redundant. This redundancy

can be removed by working with multivariate cumulants instead of

with multivariate moments. Multivariate cumulants are discussed in

Section 2.1.2. Because multivariate cumulants can be expressed in

terms of multivariate moments, the current section serves to familiar-

ize the reader with multivariate moments.

Let x¼ x1,…,xnð Þ be the fMRI activity of n brain regions at a given

time-point. We treat x as a realization of a random vector

X¼ X1,…,Xnð Þ. Different realizations of X correspond to different

time-points. Without loss of generality, we assume that the expecta-

tion  Xi½ � ¼0 for all brain regions i. This assumption reflects the fact

that the information in fMRI signals is contained in their fluctuations,

and not in their off-sets. We refer to positive and negative deflections

of Xi as activations and deactivations, respectively. Figure 1a provides

an illustration. This distinction will be important when considering

higher-order connectivity between three brain regions.

The probability distribution of X is completely determined by the

moment generating function of X, which is defined as:

M ξð Þ¼ exp
Xn
i¼1

ξiXi

 !" #
, ð1Þ

for ξ¼ ξ1,…,ξnð Þ. To see how the moment generating function

encodes the probability distribution of X, we expand it in a Taylor

series about ξ¼0. This gives
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M ξð Þ¼ 1þ
Xn
i¼1

miξiþ
Xn
i, j¼1

1
2!
mi,jξiξjþ

Xn
i, j,k¼1

1
3!
mi,j,kξiξjξk

þ
Xn

i, j,k, l¼1

1
4!
mi,j,k,lξiξjξkξlþ…

ð2Þ

The Taylor series represents the moment generating function as a

sum of monomials (the terms in Equation (2)) in the variables ξ1,…,ξn
of increasing degree. The monomial coefficients mi , mi,j, mi,j,k , and so

forth. are the multivariate moments of X, which will be discussed

below. The subscripts i, j,k, l and so forth. take values in the set

1,2,…,nf g and correspond to brain regions. Note that there are n

moments of degree one, n2 moments of degree two and so on. Our

interest, however, is in the moments that correspond to distinct brain

regions. So, for example, we are not interested in m1,1 and m2,2

(i.e., the second-order moments of regions 1 and 2) but in m1,2 (the

second-order moment between region 1 and 2). There is a one-to-one

correspondence between such moments of order d and subsets of d

brain regions. In particular, there are n
d
such moments of order d.

The coefficients of the monomials of degree one are the first-

order moments of X:

mi ¼
∂M
∂ξi

0ð Þ¼ Xi½ � ¼0, ð3Þ

for i¼1,…,n. In Equation (3) the term ∂M=∂ξið Þ 0ð Þ denotes the partial

derivative of M with respect to ξi evaluated at ξ¼ 0,…,0ð Þ. The

coefficients of the monomials of degree two are the second-order

moments of X:

mi,j ¼
∂2M
∂ξi∂ξj

0ð Þ¼ XiXj

� �
, ð4Þ

for i, j¼1,…,n. The second-order moment mi,j is the covariance

between the fMRI signals from regions i and j. It quantifies the extent

to which the fluctuations in regions i and j are coherent, that is, co-

fluctuate. Figure 1b provides an illustration. Note that we do not have

to distinguish between activations and deactivations when dealing

with second-order moments, because second-order moments are

invariant under simultaneous reversal of the signs of the signals:

 �Xið Þ �Xj

� �� �
¼ XiXj

� �
. This, however, is not the case for third-order

moments, as explained below.

The coefficients of the monomials of degree three are the third-

order moments of X:

mi,j,k ¼
∂3M

∂ξi∂ξj∂ξk
0ð Þ¼ XiXjXk

� �
, ð5Þ

for i, j,k¼1,…,n. The moment mi,j,k quantifies the extent to which the

signals from regions i, j,k co-fluctuate. Because mi,j,k changes sign

when the signs of all three signals are flipped, a positive third-order

moment reflects the co-occurrence of activations, whereas a nega-

tive third-order moment reflects the co-occurrence of deactiva-

tions. The third-order moment, in other words, distinguishes

between activations and deactivations and this is true for all

moments of odd order. However, since it is invariant under simulta-

neous sign reversal of two of the three signals, a positive value can

also reflect the co-deactivation of regions i and j and the simulta-

neous activation of region k. These two possibilities are illustrated in

Figure 1b. Which interpretation is correct in a given situation can be

determined by inspecting the signs of the covariances between the

pairs of regions.

Finally, the coefficients of the monomials of degree four are the

fourth-order moments of X:

mi,j,k,l ¼
∂4M

∂ξi∂ξj∂ξk∂ξl
0ð Þ¼ XiXjXkXl

� �
, ð6Þ

for i, j,k, l¼1,…,n. The moment mi,j,k,l quantifies the extent to which

the signals from regions i, j,k, l co-fluctuate. Because there are an even

number of regions, the fourth-order moment is invariant under simul-

taneous sign flips of the signals. So, unlike third-order moments,

fourth-order moments do not distinguish between activations and

deactivations. They are also invariant under simultaneous sign flips of

two of the four signals, so that positive values have two possible

interpretations; either all regions co-fluctuate with the same signs or

with opposite signs. These two possibilities are illustrated in

Figure 1b. Which interpretation is correct in a given situation can be

assessed by inspecting the signs of the covariances between the pairs

of regions.

region i

region k

region j

region l

second-order fourth-orderthird-order 

 activation  deactivation  fluctuation(a)

mi,j
mi,j,k

mi,j,k,l

(b)

 time

 amplitude

 time

 amplitude

 time

 amplitude

F IGURE 1 Functional interpretation of multivariate moments.
(a) Left: A positive deflection of the functional magnetic resonance
imaging (fMRI) signal relative to baseline (activation). Middle: A
negative deflection of the fMRI signal relative to baseline
(deactivation). Right: The concatenation of an activation and a
deactivation (i.e., a fluctuation). (b) Schematic illustration of the
functional interpretation of higher-order moments. A positive second-
order moment mi,j between fMRI signals from regions i and j reflects
coherent fluctuations (i.e., both activations and deactivations) in
regions i and j. A positive third-order moment mi,j,k between fMRI
signals in regions i, j,k can reflect coherent activations in all three
regions i, j,k or coherent deactivations in two of the regions (regions i
and j) and simultaneous activation of the third region (region k). A
positive fourth-order moment mi,j,k,l between fMRI signals in regions
i, j,k, l can reflect coherent fluctuations (i.e., both activations and
deactivations) in all four regions or coherent fluctuations in two pairs
of regions (pairs i, jð Þ and k, lð Þ) that are anti-correlated.
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2.1.2 | Multivariate cumulants of fMRI signals

Higher-order moments cannot directly be used to infer the existence

of higher-order connectivity, because a non-vanishing higher-order

moment might be explained by the covariances between the partici-

pating regions (Novelli & Razi, 2022). This can be understood be con-

sidering connectivity between four distinct brain regions. If each pair

of regions has a positive covariance, the fourth-order moment will

be positive as well, even though there is no genuine fourth-order

connectivity between the regions. Thus, to obtain connectivity mea-

sures that are only sensitive to genuine higher-order connectivity,

the “redundant” part of the higher-order moments needs to be

removed. Here “redundant” refers to the part that can be expressed

in terms of lower-order moments. This naturally leads to the notion

of multivariate cumulants. Below we will see that the non-redundant

part of a multivariate moment is the corresponding multivariate

cumulant. In this section, we introduce multivariate cumulants and

explain why they are natural measures of genuine higher-order

connectivity.

The cumulants of a random vector X are defined as the coeffi-

cients in the Taylor expansion of the cumulant generating function of

X. The cumulant generating function is defined as the natural loga-

rithm of the moment generating function of X:

C ξð Þ¼ lnM ξð Þ: ð7Þ

By expanding the cumulant generating function in a Taylor series

about ξ¼0 we obtain a series of the following form:

C ξð Þ¼
Xn
i¼1

ciξiþ
Xn
i, j¼1

1
2!
ci,jξiξjþ

Xn
i, j,k¼1

1
3!
ci,j,kξiξjξkþ

Xn
i, j,k, l¼1

1
4!
ci,j,k,lξiξjξkξlþ…

ð8Þ

where the coefficients are given by the various partial derivatives

of the cumulant generating function. Like the moment generating

function, the cumulant generating function completely character-

izes the probability distribution of X. Observe that it has the same

form as the moment generating function (Equation 2): it is a linear

combination of monomials in the variables ξ1,…,ξn. The coefficients ci

are referred to as the first-order cumulants of X, ci,j are the second-

order cumulants of X, and so on. Note that there is a one-to-one corre-

spondence between the moments and cumulants of X of any given

order.

To see why cumulants are natural measures of genuine higher-

order connectivity, we express them in terms of moments. The first-

order cumulant of region i is equal to the first-order moment of

region i:

ci ¼
∂C
∂ξi

0ð Þ¼mi: ð9Þ

The second-order cumulant between regions i and j is:

ci,j ¼
∂2C
∂ξi∂ξj

0ð Þ¼mi,j�mimj: ð10Þ

So ci,j is the covariance between Xi and Xj. Equation (10) shows

that a second-order cumulant vanishes if and only if the correspond-

ing second-order moment can be expressed in terms of moments of

lower order (in this case of order one): mi,j ¼mimj. Functionally, ci,j ¼0

means that mi,j is “explained” by the first-order moments mi and mj,

and is in this sense redundant. Thus, the second-order cumulant ci,j is

the non-redundant part of the second-order moment mi,j. Now con-

sider the third-order cumulant ci,j,k . It can be expressed in terms of

moments as:

ci,j,k ¼
∂3C

∂ξi∂ξjξk
0ð Þ¼mi,j,k�mimj,k�mjmi,k�mkmi,j: ð11Þ

Equation (11) shows that the third-order cumulant vanishes if and

only if the corresponding third-order moment mi,j,k can be expressed

in terms of moments of lower order:

mi,j,k ¼mimj,kþmjmi,kþmkmi,j: ð12Þ

Functionally, ci,j,k ¼0 means that the third-order moment mi,j,k can

be “explained” by the first- and second-order moments and is in this

sense redundant.

Since we have assumed that mi ¼0, Equations (9)–(11) simplify to

ci ¼0, ci,j ¼mi,j , and ci,j,k ¼mi,j,k , respectively, and hence show that the

cumulants up to and including order three are identical to the corre-

sponding moments. This is not true for the fourth-order cumulant,

which can be expressed in terms of moments as:

ci,j,k,l ¼
∂4C

∂ξi∂ξjξkξl
0ð Þ¼mi,j,k,l�mi,jmk,l�mi,kmj,l�mi,lmj,k: ð13Þ

Equation (13) shows that the fourth-order cumulant vanishes if

and only if the corresponding fourth-order moment mi,j,k,l can be

expressed in terms of lower-order moments:

mi,j,k,l ¼mi,jmk,lþmi,kmj,lþmi,lmj,k: ð14Þ

So, the fourth-order cumulant measures the non-redundant part

of the fourth-order moment.

2.1.3 | Higher-order connectivity measures

In Section 2.1.2, we explained that multivariate cumulants, but not

multivariate moments, are measures of genuine higher-order connec-

tivity. In the current section we use third- and fourth-order cumulants

to construct third- and fourth-order connectivity measures. In the sta-

tistics literature, these measures are referred to as the coskewness and

HINDRIKS ET AL. 5 of 24
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cokurtosis, respectively, and they are obtained from the third- and

fourth-order cumulants by appropriate normalization. We will also

adjust the edge connectivity measure proposed in (Faskowitz

et al., 2020) to render it a measure of genuine fourth-order

connectivity.

To obtain dimensionless measures, the moments that appear in

the definition of the cumulants are divided by the product of the stan-

dard deviations of the fMRI signals of the participating brain regions.

The normalized moments are commonly referred to as correlations

and we will denote them by ri,j, ri,j,k , ri,j,k,l , and so forth. They are hence

given by:

ri,j ¼
mi,j

σiσj
, ri,j,k ¼

mi,j,k

σiσjσk
, ri,j,k,l ¼

mi,j,k,l

σiσjσkσl
, ð15Þ

where σ2i ¼mii is the variance of the fMRI signal in region i. The corre-

sponding normalized cumulants are denoted by rci,j , r
c
i,j,k , r

c
i,j,k,l , and so

forth:

rci,j ¼
ci,j
σiσj

, rci,j,k ¼
ci,j,k
σiσjσk

, rci,j,k,l ¼
ci,j,k,l

σiσjσkσl
, ð16Þ

So, the redundant and non-redundant correlations are the nor-

malized moments and cumulants, respectively. In quantum field the-

ory, the redundant and non-redundant correlations are referred to as

disconnected and connected, respectively (hence the superscript “c”)
(Schweigler et al., 2017).

Note that the second-order non-redundant correlation is the

Pearson correlation coefficient. Correlations between more than two

regions are referred to as higher-order. They are used in many scien-

tific fields, including quantum mechanics (Schweigler et al., 2017), cos-

mology (Takada & Jain, 2003), and statistical thermodynamics

(Jensen, 2012), to study higher-order interactions in physical systems.

Only the second-order correlation is confined to the interval �1,1½ �.
However, due to the normalization, the correlations of any order are

dimensionless and can therefore be compared across data-sets,

subjects, and studies. In the statistical literature, the third- and fourth-

order non-redundant correlations are referred to as (excess) coskew-

ness and (excess) cokurtosis, respectively. They are multivariate gener-

alizations of the notions of skewness and kurtosis. In this study, due

to computational constraints, we will only consider higher-order cor-

relations up to and including order four, that is, the coskewness and

the cokurtosis.

Besides coskewness and cokurtosis, we also consider a

recently proposed fourth-order connectivity measure referred to

as the edge connectivity (Faskowitz et al., 2020). The edge connec-

tivity is a special case of the measure proposed earlier in Martel-

lini and Ziemann (2010). Like higher-order moments, the edge

connectivity cannot be used directly for assessing higher-order

connectivity, because it has a redundant part (Novelli &

Razi, 2022). We can, however, adjust it to obtain a non-redundant

measure as described below. The edge connectivity between edges

i, jð Þ and k, lð Þ is defined as:

εij,kl ¼
mi,j,k,l

mi,i,j,jmk,k,l,l

� �1=2 , ð17Þ

and takes values in the interval �1,1½ � (Faskowitz et al., 2020). To see

that it contains a redundant part, we use Equation (13) to express the

edge connectivity in terms of cumulants:

εij,kl ¼
ci,j,k,lþmi,jmk,lþmi,kmj,lþmi,lmj,k

ci,i,j,jþ2m2
i,jþmi,imj,j

� �
ck,k,l,lþ2m2

k,lþmk,kml,l

� �� �1=2 : ð18Þ

The redundant part εrij,kl is obtained by setting the fourth-order cumu-

lants to zero. This gives,

εrij,kl ¼
mi,jmk,lþmi,kmj,lþmi,lmj,k

2m2
i,jþmi,imj,j

� �
2m2

k,lþmk,kml,l

� �� �1=2 , ð19Þ

The non-redundant part of the edge connectivity is now obtained by

subtracting the redundant part:

εcij,kl ¼ εij,kl�εrij,kl: ð20Þ

In the remainder of the text, we will refer to the corrected edge

connectivity εcij,kl simply as “edge connectivity.”

2.2 | Estimation and inference

2.2.1 | Estimation

Let X 1ð Þ,…,X Tð Þ be n-dimensional random vectors that model the fMRI

activity in n brain regions at T points in time. The i-th coordinate of

X tð Þ is denoted by X tð Þ
i for t¼1,…,T. Thus, X tð Þ

i is the value of the fMRI

signal in region i and time t. We assume that the fMRI signals have

been z-scored so that they have sample mean zero:

1
T

XT
t¼1

X tð Þ
i ¼0,

for i¼1,…,n. We furthermore assume that the signals have been nor-

malized to unit variance:

1
T�1

XT
t¼1

X tð Þ
i

� �2
¼1

for i¼1,…,n. No information is lost in this normalization, because the

connectivity measures are dimensionless. The normalization only

serves to simplify the measures' formulas.

Since the connectivity measures described in Section 2.1.3 can be

expressed in terms of moments of the fMRI signals, the most straight-

forward way to estimate the measures is to replace the moments by

sample moments. In other words, the expectation operator that

6 of 24 HINDRIKS ET AL.
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appears in the definition of the moments is replaced by (temporal)

averaging. Thus, the estimators of the second and third-order correla-

tions are:

bri,j ¼1
T

XT
t¼1

X tð Þ
i X tð Þ

j , ð21Þ

and

bri,j,k ¼ 1
T

XT
t¼1

X tð Þ
i X tð Þ

j X tð Þ
k , ð22Þ

respectively, and so on for higher orders. Note that the index p runs

over the N observations X 1ð Þ,…,X Nð Þ. Such estimators are referred to

as plug-in estimators. The plug-in estimators for the correlations are

used to construct estimators brci,j, brci,j,k , and brci,j,k,l for the correlation rci,j ,

coskewness rci,j,k , and cokurtosis rci,j,k,l , respectively, as well as an esti-

mator bεcij,kl for the (non-redundant) edge connectivity εcij,kl.

In Appendices A and B, we derive the asymptotic sampling distri-

butions of the plug-in estimators of the coskewness, cokurtosis, and

edge connectivity, under the assumption that the observations at dif-

ferent time-points are independent. The asymptotic distributions

make clear that the estimators are asymptotically unbiased and nor-

mally distributed and can in principle be used to construct (asymp-

totic) confidence intervals and hypothesis tests for the higher-order

connectivity measures. Unfortunately, although N might be suffi-

ciently large for the confidence intervals and hypothesis tests to be

valid, they require the observations to be independent, which typically

is not the case in practice since fMRI signals have (positive) auto-

correlations. Consequently, the confidence intervals derived from the

asymptotic distributions will be too narrow and the null distributions

will have too small variances, giving rise to spurious connectivity. In

practice, therefore, we need to use randomization techniques to carry

out statistical inference.

2.2.2 | Statistical inference

The presence of auto-correlations in fMRI data complicates statistical

inference about higher-order correlations from individual subjects,

because for such data, the null and sampling distributions of the plug-

in estimators are unknown. This makes drawing conclusions from such

data considerably more challenging than in the case of group data,

because for group data, the sampling distributions can be approxi-

mated by using independent bootstrapping over subjects, at least if

sufficiently many subjects are available (Efron & Tibshirani, 1986). If,

in addition to multiple subjects, contrasting conditions are available,

either z- or t-tests can be used or the null distributions can be approx-

imated using permutation tests or independent bootstrapping. In the

present study, we focus on inference from single-subject data, which

requires the use of randomization techniques to take into account

auto-correlations in the fMRI signals. In general, hypothesis testing

can be done either by approximating the null or the sampling

distribution of a given statistic, the latter of which also allows for the

construction of confidence intervals. We first discuss randomization

techniques for approximating null distributions for hypothesis testing

about higher-order connectivity that have recently been proposed.

As mentioned in Section 1, different fMRI studies use different

randomization techniques and there is some discussion on which

technique is most appropriate (Betzel et al., 2022; Jo et al., 2021). This

issue might be clarified by making explicit the null hypotheses that

correspond to the different randomization techniques. The most

widely used technique to test the null hypothesis of no (time-

resolved) higher-order interaction, involves testing for large-amplitude

fluctuations in the multiple edge time-series (Betzel et al., 2022).

Null-data are constructed by circularly shifting each time-series by a

random number of samples. This preserves the signal means, their var-

iances, and approximately their auto-correlation functions. It also

retains any non-stationarities that might be present in the signals.

However, it largely removes any cross-correlations between different

time-series and does this entirely if the shifts are larger than the char-

acteristic time-scale of the signals' auto-correlations. The null-

hypothesis corresponding to this randomization technique, therefore,

is that the signals are uncorrelated. Hence, rejection of the null

hypothesis means that the observed value of the edge connectivity

cannot be explained by uncorrelated signals. In other words, if the null

hypothesis is rejected, we can conclude that the signals are uncorre-

lated. This obviously is not the intended conclusion and hence this

kind of randomization is not appropriate for hypothesis testing for

higher-order connectivity.

Randomization techniques that are more appropriate for testing

for higher-order connectivity are coherent phase-randomization

(Prichard & Theiler, 1994) and auto-regressive randomization (Saggar

et al., 2022) because they take into account the auto- and cross-

correlation structure within the data. Both techniques generate

Gaussian null-data and hence correspond to the null-hypothesis that

all higher-order connectivities are zero. Although this null-hypothesis

is stronger than the intended one, which is that only the third-order

(or fourth-order) connectivity is zero, their use in combination with a

third-order (or fourth-order) connectivity measure as test-statistic,

gives at least some confidence for the presence of third-order

(or fourth-order) connectivity. A drawback of these techniques is that

they rely on the assumption of linearity and stationarity, so that a

rejection of the null-hypothesis might reflect the presence of higher-

order connectivity, but also that of non-linearity, non-stationarity, or a

combination of these. Another drawback is that these techniques, by

their very nature, cannot be used for the construction of confidence

intervals. For these reasons, in this study we explore the use of boot-

strap techniques, which can in principle be used both for testing and

for constructing confidence intervals.

Let X be a n�T data matrix comprising n simultaneously recorded

fMRI time-series of length T and let T Xð Þ be an estimator of a param-

eter θ. If the sampling distribution of T Xð Þ is known, it can be used to

construct confidence intervals for θ and to test hypothesis about θ. If

the sampling distribution of T Xð Þ does not depend on the auto- and

cross-correlation structure within the data, its sampling distribution

HINDRIKS ET AL. 7 of 24
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can be approximated by bootstrapping individual observations. That

is, one randomly draws T columns from X with replacement, combines

them into a n�T bootstrap data matrix X� and computes T X�ð Þ. By
repeating this a large number of times, an approximation of the sam-

pling distribution of T Xð Þ is obtained. This is referred to as the inde-

pendent bootstrap (Efron & Tibshirani, 1986). The sampling

distributions of the estimators of most parameters of interest, how-

ever, depend on the auto- and cross-correlation structure within the

fMRI signals, so that the independent bootstrap is of limited use in

this context.

The most straightforward bootstrap technique that takes into

account the auto- and cross-correlation structure within the data is

the block bootstrap (Kunsch, 1989) which involves sampling blocks of

consecutive observations, rather than individual observations. Thus,

the fMRI signals are divided into non-overlapping blocks of a fixed

length L that divides T and the fMRI signals are cut into B¼ T=L non-

overlapping blocks of length L. We then sample B blocks with replace-

ment and concatenate them to obtain a bootstrapped data matrix X�

from which we compute the statistic T X�ð Þ. By repeating this a large

number of times, we obtain an approximation of the sampling distri-

bution of T Xð Þ.
A related technique is the stationary bootstrap (Politis &

Romano, 1994) which yields stationary time-series. If the observations

are stationary and have short-range auto- and cross-correlations, both

techniques are asymptotically valid for a large class of statistics. This

means that the approximated standard errors converge to the true

ones if sufficient data is available. However, it is unclear how they

perform on finite data sets with dependencies encountered in resting-

state fMRI signals. This is an empirical question that is best assessed

by using simulated data, which we will do in this study. We focus on

the block bootstrap because the stationary bootstrap yielded practi-

cally identical results.

2.3 | Generative model

2.3.1 | Model description

To assess the performance of the connectivity measures and the block

bootstrap, we generated synthetic fMRI signals using a generative

model. We used a simple model so that explicit formulas for the con-

nectivity measures can be derived. These formulas serve as the ground-

truth and are used to assess the quality of the connectivity measures.

Let X tð Þ �ℝn be the t-th sample of the fMRI activity vector of n

brain regions. The activity of the i-th brain region is denoted by X tð Þ
i .

We will only be concerned with the cases n¼3 (for modeling third-

order connectivity) and n¼4 (for modeling fourth-order connectivity).

The model needs to be sufficiently flexible to allow for arbitrary corre-

lations between the fMRI signals that can be chosen independently of

the time-scale of the auto-correlations and the values of the higher-

order moments.

We model X tð Þ
i as a first-order auto-regressive process that is

driven by the sum of a Gaussian and a non-Gaussian process:

X tþ1ð Þ
i ¼ϕX tð Þ

i þZ tð Þ
i þψU tð Þ: ð23Þ

In Equation (23) Zi is a zero-mean and unit-variance white Gauss-

ian processes. The parameter 0≤ϕ<1 controls the time-scale of the

auto-correlations and ψ ≥0 controls the contribution of the non-

Gaussian process U to the simulated fMRI signal. Note that for each

region the same random variable U is added. This will give rise to

third-order correlations in X as described below.

U tð Þ can be any (zero-mean and unit-variance) non-Gaussian ran-

dom variable and an appropriate choice depends on which higher-

order connectivities are of interest. For example, and as explained in

more detail later on, in assessing the performance of the coskewness,

which relates to multivariate asymmetry, we let U follow an asymmet-

ric distribution (the skew-normal distribution). Likewise, in assessing

the performance of the cokurtosis and (non-redundant) edge connec-

tivity, we let U follow a heavy-tailed distribution (the t-distribution).

For simplicity we assume that the correlation between Zi and Zj

equals a constant –1 < ρ<1 for all i≠ j. The characteristic time-scale

of the auto-correlations in Xi is � ln ϕð Þ samples, so to ensure a charac-

teristic time-scale of τ samples we set ϕ¼ exp �τð Þ.
We now obtain a ground-truth expression for the correlation rcij.

The covariance between each pair i, jð Þ of brain regions is

ρþψ2
� �

= 1�ϕ2
� �

and the variance of each region is

1þψ2
� �

= 1�ϕ2
� �

and therefore, the correlation between each pair

i, jð Þ of brain regions is:

rci,j ¼
ρþψ2

1þψ2
: ð24Þ

To ensure that the correlation between any two fMRI signals is

equal to some desired value r, we therefore need to set

ρ¼ rþ r�1ð Þψ2: ð25Þ

However, because the covariance matrix of E tð Þ needs to be

positive-definite, not all values of r are possible, but only those for

which ρ> �1= n�1ð Þ. This follows from the fact that the eigenvalue

1þ n�1ð Þρ of the covariance matrix of E needs to be positive. This

requirement implies that

r >
ψ2

ψ2þ1
� 1

ψ2þ1ð Þ n�1ð Þ : ð26Þ

We will restrict ψ to the interval 0,1½ � and because the function

on the right-hand-side of Equation (24) is increasing in ψ , it is suffi-

cient that

r >
1
2
� 1
2 n�1ð Þ : ð27Þ

In particular, for n¼3 and n¼4 we need r >1=4 and r >1=3,

respectively, which are realistic values for resting-state fMRI signals.

8 of 24 HINDRIKS ET AL.
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2.3.2 | General expressions for higher-order
connectivities

We now derive expressions for the coskewness, cokurtosis, and edge

connectivity in terms of the parameters of the generative model.

Besides the parameters ϕ and ψ , the expressions depend on the prob-

ability distribution of the random variable U. We do not make assump-

tions about U except that it has finite third- and fourth-order

cumulants. The expressions for the coskewness, cokurtosis, and edge

connectivity will involve these cumulants.

We denote the third- and fourth-order cumulants of U by cU3 and

cU4 , respectively. The coskewness between any triplet of brain regions

i, j,k is then given by,

rci,j,k ¼
1�ϕ2
� �3=2

ψ3

1�ϕ3
� �

1þψ2ð Þ3=2
cU3 ð28Þ

and the cokurtosis between any quadruple of brain regions i, j,k, l is:

rci,j,k,l ¼
1�ϕ2
� �2

ψ4

1�ϕ4
� �

1þψ2ð Þ2
cU4 : ð29Þ

Note that the coskewness and cokurtosis do not depend on the

correlation ρ and hence also not on the correlation between the sig-

nals from different brain regions.

An expression for the non-redundant connectivity between edges

i, jð Þ and k, lð Þ can be obtained from its definition (Equations 20 and 29)

which gives

Its redundant part is obtained by setting cU4 ¼0 in Equation (30).

Note that, in contrast to the coskewness and cokurtosis, the (non-

redundant) edge connectivity depends on ρ and hence on the (com-

mon) correlation between the signals from different brain regions.

2.3.3 | Modeling third-order connectivity

To generate synthetic fMRI signals that exhibit third-order connectiv-

ity, we need to make a concrete choice for the probability distribution

of the random variable U that appears in the generative model. This

will yield concrete formulas for the coskewness as explained below.

For simulating third-order connectivity we let n¼3 in the genera-

tive model and assume that the non-Gaussian fluctuations U follow a

skew-normal distribution. The skew-normal distribution is specified

by a mean μ, a variance κ2, and a shape parameter α that controls the

skewness. In particular, α¼0 corresponds to the normal distribution

with mean μ and variance σ2 and positive/negative values of α corre-

spond to a right�/left-skew, respectively. Let:

δ¼ αffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα2

p : ð31Þ

The mean and variance of U can be expressed in terms of δ as:

c1U ¼ μþκδ

ffiffiffi
2
π

r
, ð32Þ

and

c2U ¼ 1�2δ2

π

	 

κ2, ð33Þ

respectively. So to ensure that U has zero mean and unit variance we

need to take the following values for the parameters μ and σ:

κ2 ¼ π

π�2δ2
ð34Þ

and

μ¼�κδ

ffiffiffi
2
π

r
: ð35Þ

The third-order cumulant of U is:

εij,kl ¼
ψ4 cU4 þ3
� �

þ3ρ2þ6ϕ2 ρþψ2
� �

= 1�ϕ2
� �

þ6ρψ2

1þ2ρ2þψ4 cU4 þ3
� �

þ2 1þρð Þψ2þ2ϕ2 1þψ2ð Þ2þ2 ρþψ2ð Þ2
� �

= 1�ϕ2
� � : ð30Þ

c3U ¼
4�π

2

δ
ffiffiffiffiffiffiffiffi
2=π

p� �3
1�2δ2=π
� �3=2 : ð36Þ

Substituting Equations (36) into (28) gives the formula for the

coskewness between any three brain regions i, j,k:

rci,j,k ¼
1�ϕ2
� �3=2

ψ3

1�ϕ3
� �

1þψ2ð Þ3=2
4�π

2

δ
ffiffiffiffiffiffiffiffi
2=π

p� �3
1�2δ2=π
� �3=2 : ð37Þ

A plot of c3U as a function of δ shows that c3U increases from 0 to

nearly 1 so that the maximal value of the coskewness is approximately

ψ3= 1þψ2
� �3=2

.
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To obtain realizations of the random variable U we use the fact

that it has the following stochastic representation:

U¼�σUδ

ffiffiffi
2
π

r
þσU δjZ1jþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�δ2

p
Z2

� �
, ð38Þ

where Z1 and Z2 are independent and standard-normally distributed

and σU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π= π�2δ2
� �q

(Henze, 1986).

2.3.4 | Modeling fourth-order connectivity

To generative synthetic fMRI signals that exhibit fourth-order connec-

tivity, we need to make a concrete choice for the probability distribu-

tion of the random variable U that appears in the generative model.

This will yield concrete formulas for the cokurtosis and edge connec-

tivity as explained below.

For simulating fourth-order connectivity we let n¼4 in the gener-

ative model and assume that the non-Gaussian fluctuations U follow a

t-distribution with unit variance:

U¼
ffiffiffiffiffiffiffiffiffiffi
ν�2
ν

r
U0, ð39Þ

where U0 follows a t-distribution with ν degrees of freedom. The nor-

malization constant ensures that U has unit variance. Because

c4U ¼6= ν�4ð Þ, the cokurtosis between any four brain regions i, j,k, l is

only defined for ν≥5 and is given by:

rci,j,k,l ¼
1�ϕ2
� �2

ψ4

1�ϕ4
� �

1þψ2ð Þ2
6

ν�4
, ð40Þ

which is obtained by substituting the expression for c4U into

Equation (29).

Since m4
U ¼3 ν�2ð Þ= ν�4ð Þ, the non-redundant edge connectivity

between any two edges i, jð Þ and k, lð Þ is obtained by substituting the

expression for mU
4 into Equation (30). Note that the edge connectivity

is only defined for ν≥5.

2.4 | BOLD-fMRI data-sets and pre-processing

2.4.1 | Human connectome project

We used the resting-state BOLD-fMRI data from the 94 subjects of

the Human Connectome Project that also underwent magnetoence-

phalographic recordings (Glasser et al., 2013; Glasser, Smith,

et al., 2016; Larson-Prior et al., 2013). We used these subjects in

order to compare the results with those obtained from MEG data in a

subsequent study. Each subject was scanned four times using

gradient-echo echo-planar imaging with a 3T Siemens Connectome

Skyra scanner for 15 min. The subjects were asked to lie still and

fixate at a white cross-hair on a dark background, think of nothing in

particular, and not to fall asleep. This yielded 1200 volumes with a

cubic resolution of 2 mm and a repetition time of 0.72 s. The data

were subsequently registered to standard HCP cortical meshes. Nui-

sance signals such as motion-derived artifacts and physiological noise

were cleaned using ICA-FIX, a classifier approach that removes “bad”
components from the data. These procedures yield the FIX-

denoized-compact HCP data (Smith et al., 2013). Prior to analysis, the

fMRI signals were bandpass filtered between 0.01 and 0.1 Hz using a

zero-phase fourth-order Butterworth filter and subsequently averaged

over the regions-of-interest in the Glasser parcellation (Glasser,

Coalson, et al., 2016).

2.4.2 | Clinical sample: Multiple sclerosis

We used resting-state BOLD-fMRI from 330 people with MS and

95 healthy controls from the Amsterdam MS cohort (as described pre-

viously in Broeders et al., 2022, Eijlers et al., 2017, Meijer et al., 2017,

Schoonheim et al., 2021, Strik et al., 2021). Clinically definite MS was

established in accordance with the 2010 revised McDonald criteria

(Polman et al., 2011). The patients were relapse-free and were not

under steroid treatment for 2 months or more before participating in

the study. Additionally, they had no history of another psychiatric or

neurological disease. All participants provided written informed con-

sent forms and the appropriate approval was obtained from the insti-

tutional ethics review board.

Cognitive assessment was performed using the brief repeatable

battery of neuropsychological tests (Rao, 1990). Test scores were

combined to form seven cognitive domains: executive functioning,

verbal memory, information processing speed, verbal fluency, visuo-

spatial memory, working memory, and attention. Patients were classi-

fied as cognitively impaired (CI) if they scored 2 standard deviations

or more below controls on at least two cognitive domains, as mildly CI

(MCI) if they scored between 1.5 and 2 standard deviations below

controls on two or more cognitive domains, and the remaining

patients were considered cognitively preserved (CP). Finally, average

cognition was determined for all individuals by averaging scores of all

domains.

MRI was performed with a 3T GE “Signa-HDxt” MRI (Wilwaukee,

WI) using an 8-channel phased-array head coil. A 3D T1-weighted fast

spoiled gradient echo sequence was obtained for accurate segmenta-

tion of brain regions. A 3D T2-weighted fluid-attenuated inversion

recovery (FLAIR) scan was acquired for segmentation of white-matter

lesions in MS patients. Finally, an echo planar imaging (EPI) sequence

was performed to acquire resting-state fMRI scan, during which par-

ticipants were asked to lie with their eyes closed and think of nothing

in particular. This yielded 202 volumes with a resolution of

3:3�3:3�3mm3 and a repetition time of 2.2 s.

Pre-processing of the functional MRI data has been updated since

the previous analysis. In short, structural image pre-processing con-

sisted of white-matter lesion segmentation and filling (for patients),

brain extraction, brain tissue segmentation (white-, grey-matter, and
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cerebrospinal fluid [CSF]), non-linear registration to standard space,

and finally segmentation of brain regions using cortical regions from

the Brainnetome atlas (Fan et al., 2016) and deep grey matter regions

using FSL's FIRST (Patenaude et al., 2011). Functional pre-processing

involved removing the first two dummy scans, motion and slice-time

correction, brain extraction, Gaussian spatial smoothing, motion arte-

fact removal using ICA-AROMA (Pruim et al., 2015), regression-based

removal of mean white-matter and CSF signal, high-pass temporal fil-

tering (0.02 Hz), and the final steps included boundary-based linear

registration to the T1-weighted image.

Cortical and deep grey matter regions were registered to the

functional images and used to create time-series for all brain regions.

All cortical brain regions (Fan et al., 2016) were assigned to one of six

cortical networks based on maximum overlap (Yeo et al., 2011): the

DMN, frontoparietal network (FPN), dorsal attention network, ventral

attention network, visual network, and sensorimotor network. Finally,

all deep grey matter regions were combined into a distinct network.

Intra-DMN connectivity was calculated by averaging the absolute

second-order correlations (Pearson correlation) between all regions

assigned to the DMN. Extra-DMN connectivity was computed for

each of the six other networks by averaging the absolute second-

order correlation between regions of these networks. For third- and

fourth-order connectivity, it was possible to have more than one node

in either of the two networks. For instance, third-order connectivity

between the DMN and FPN can encompass one DMN node and two

FPN nodes or vice versa. We determined the multicollinearity

between these combinations using a simple regression model with

average cognition as dependent variable and if the variable inflation

factor (VIF) reached above 10 we used the mean over these combina-

tions in subsequent analyses.

Pairwise connectivity values are often normalized using the global

connectivity value, as it is thought to remove noise and improve con-

nectome “fingerprinting” (Finn et al., 2015). However, this has never

been determined for higher-order connectivity. Therefore, we chose

to not normalize pairwise connectivity using global connectivity, but

to include global connectivity as covariate in all statistical models. For

pairwise and third-order connectivity, the mean absolute connectivity

strength between all brain regions was computed. This was not feasi-

ble for all fourth-order connections, so 10,000 random quadruplets

were selected and the mean connectivity strength of those quadru-

plets was included as global fourth-order connectivity.

Statistical analyses were performed in IBM SPSS version

28 (Armonk, NY, USA) and p-values <.05 were considered statistically

significant. We checked normality of all connectivity values using the

Kolmogorov–Smirnov test and by histogram inspection, with log-

transformations being applied to all higher-order connectivity metrics

as they did not pass these tests. All analyses were corrected for age,

sex, level of education and global connectivity (of the corresponding

order). The level of education was based on the highest level that was

attained, these scores were binarized for all analyses (higher profes-

sional education yes/no). We compared within-DMN and extra-DMN

pairwise connectivity across cognitive groups (HC, CP, MCI and CI)

using linear mixed models. The p-values were adjusted for performing

multiple comparisons using Bonferroni (both unadjusted and adjusted

values are reported: p and p-adj). If a difference between groups was

observed for pairwise connectivity, the same network pair was com-

pared across groups for third and fourth-order connectivity as well.

Finally, we performed a multiple linear regression on data from MS

patients with average cognition as a dependent variable, to see if

higher-order connectivity of the DMN explains additional variance

beyond pairwise connectivity. For this regression analysis, we

included all variables that showed significant group differences.

3 | RESULTS

3.1 | Simulations

3.1.1 | Higher-order connectivity in simulated
fMRI data

To assess the performance of the plug-in estimators for the coskew-

ness, cokurtosis, and edge connectivity, we use synthetic fMRI signals

obtained by sampling from the generative model described in

Section 2.3. To obtain appropriate values for the model parameters,

we need to know how the true higher-order connectivity in the model

depends on the model parameters. This issue will be considered in this

section. In the model, all pairs of fMRI signals have the same correla-

tion r and the auto-correlations of each signal have a characteristic

time-scale τ. We first consider appropriate values for r and τ.

To obtain a realistic value for the time-scale τ, we estimated the

auto-correlation functions of the fMRI signals of all cortical regions

and subjects and averaged them across regions and then across sub-

jects (HCP dataset). Since the auto-correlation function of the model

has the form exp �k=τð Þ, where τ denotes the lag in number of sam-

ples, we fitted this function to the group-level auto-correlation func-

tion of the fMRI data using least squares. This gave an optimal value

of τ¼2 samples. With a repetition time of 0.72 s, this corresponds to

a time-scale of 1.44 s. As discussed in Section 2.3.1, the correlation

between the simulated fMRI signals needs to exceed 1=4 (in the case

of third-order connectivity) and 1=3 (in the case of fourth-order con-

nectivity) for the model to be well-defined. We therefore set r¼0:4,

which, although a bit high, is still within the experimental range. These

values for r and τ were used in all simulations.

We now analyze the behavior of the true higher-order

connectivity as a function of the model parameters. We first consider

third-order connectivity. The generative model for fMRI signals

with third-order connectivity, as measured by the coskewness, is a

three-dimensional auto-regressive process with Gaussian as well as

non-Gaussian innovations (Equation (23)). It models the joint dynamics

of the fMRI signals in three brain regions. The strength

(i.e., standard-deviation) of the non-Gaussian innovations is controlled

by a parameter 0≤ψ ≤1, where ψ ¼0 corresponds to strength zero,

i.e., no non-Gaussian innovations, and for ψ ¼1 the Gaussian and

non-Gaussian innovations are equally strong. The non-Gaussian inno-

vations follow a skew-normal distribution with parameter α, which

HINDRIKS ET AL. 11 of 24

 10970193, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26663 by U
niversity O

f T
w

ente Finance D
epartm

ent, W
iley O

nline L
ibrary on [10/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



controls the skewness of the distribution. Thus, α¼0 corresponds to

the normal distribution and for positive values of α, the distribution is

right-skewed, which means that extreme activations are more likely

than extreme deactivations. Because all three regions receive the

same non-Gaussian innovations, they have the tendency to simulta-

neously activate, but not deactivate and, as such, engage in third-

order interactions, which is reflected in a positive coskewness (see

Figure 1a). For negative values of α, (simultaneous) extreme deactiva-

tions are more likely than extreme activations. However, since these

two cases are mathematically equivalent, we only consider the

case α≥0.

Figure 2a shows the coskewness as a function of ψ for different

values of α. For α¼0 the simulated fMRI signals are Gaussian and

hence their coskewness is zero. Their coskewness increases for

increasing values of α and converges towards a maximum coskewness

of about 0.2 for ψ ¼1. Further increasing α does not increase the cos-

kewness. In the simulations we therefore let α range between

0 and 3.

The generative model for fMRI signals with fourth-order connec-

tivity, as measured by the cokurtosis or edge connectivity, is a four-

dimensional auto-regressive process with Gaussian and non-Gaussian

innovations. It models the joint dynamics of the fMRI signals from

four brain regions. The strength of the non-Gaussian innovations is

controlled by the same parameter ψ . The non-Gaussian innovations

follow a t-distribution with ν degrees of freedom and are identical for

each brain region, which leads to fourth-order connectivity as evi-

denced by coherent extreme fluctuations (i.e., both activations and

deactivations) in the simulated fMRI signals (see Figure 1a) which is

reflected in a positive cokurtosis and edge connectivity.

For later use, we briefly consider how the fourth-order connectiv-

ity depends on the parameters ψ and ν. This may also provide some

guidance to researchers using this model to generate synthetic fMRI

signals with fourth-order connectivity. Figure 2b, c show, respectively,

the cokurtosis and edge connectivity, as a function of ψ for different

values of ν. Note that, whereas their numerical values are different,

the cokurtosis and edge connectivity depend on the model

parameters in much the same way. In particular, for high values of ν,

the innovations are nearly Gaussian and hence both measures are

close to zero, whereas for small values of ν (and ψ ¼1), the innova-

tions are strongly heavy-tailed and hence both measures are large.

Figure F and G show four simulated fMRI signals, respectively, with-

out and with fourth-order connectivity. It shows that the effects are

subtle as well. However, in the presence of fourth-order connectivity,

we observe that the signals tend to simultaneously undergo extreme

fluctuations.

3.1.2 | Bias, standard errors, and detection
probabilities

In this section, we inspect the sampling distributions of the coskew-

ness, cokurtosis, and edge connectivity estimators for resting-state

scanning sessions of 1200 samples and using a repetition time of

0.72 s. These are the settings of the resting-state fMRI data of the

HCP. We consider bias, standard errors, normality, and detection

probabilities as a function of the model parameters. For all choices of

the model parameters, the estimators' sampling distributions were

approximated by generating a large number of synthetic fMRI data-

sets from the generative model and calculating the corresponding

estimates. For the third- and fourth-order estimators we generated,

respectively, 104 and 105 synthetic datasets. For small values of ν, the

sampling distribution of the cokurtosis and edge connectivity estima-

tors have long right tails, which requires averaging over a larger num-

ber of datasets to be accurately represented. As in the previous

simulations, we set τ¼2 and r¼0:4. We consider the sampling distri-

butions as a function of ψ which is varied between 0 and 1. For the

coskewness, α was varied between 0 and 3 and for the coskewness

and edge connectivity ν ranged from 5 to 20 in steps of 3.

Figure 3a shows the true coskewness as a function of ψ and α

and Figure 3b shows the expected value of the skewness estimator as

a function of ψ and α. Their difference is shown in Figure 3c. It makes

clear that the estimator is unbiased for resting-state scanning sessions
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F IGURE 2 Higher-order connectivity in simulated functional magnetic resonance imaging (fMRI) data. (a) Coskewness as a function of the
strength ψ of the non-Gaussian innovations. The curves correspond to different values of the shape parameter α, which ranged from 0 to 6 in
step of 0.5. The arrow points in the direction of increasing α. (b) Cokurtosis as a function of the amplitude ψ of the non-Gaussian innovations. The
curves correspond to different values of the parameter ν, which ranged from 5 to 20 in steps in 1. The arrow points in the direction of decreasing
ν. (c) Same format as (b) but for the non-redundant edge connectivity.
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of this duration. Figure 3d shows the standard error of the estimator

as a function of ψ and α and shows that it is more or less constant

throughout the parameter space. Figure 3e (blue curve) shows the dis-

tribution of the coskewness estimater, which was obtained by pooling

the z-scored estimates of all parameter values (i.e., values of ψ and α).

The red curve is the standard normal distribution and makes clear that

the skewness estimator is normally distributed to a very good

approximation.

These properties are relevant for practical applications, because

they imply that the interval bθ�σzβ=2 is a 100� 1�βð Þ% confidence

interval for the coskewness, where bθ denotes the coskewness esti-

mate, σ is the standard error of bθ, and zβ is the 100� 1�βð Þ% percen-

tile of the standard normal distribution. They also imply that bθ=σ is

approximately standard-normally distributed so that the null-

hypothesis H0 : θ¼0 can be tested using a z-test. Figure 3f shows the

probability of detecting the non-zero coskewness as a function of ψ

and α. It makes clear that the detection probability only exceeds its

baseline level of 0:05 (the size of the test) if both ψ and α are large.

The maximal detection probability is 87%, which is attained for ψ ¼1

and α¼3.

In contrast to the coskewness estimator, the cokurtosis and edge

connectivity estimators systematically underestimate the true connec-

tivities, except in the absence of higher-order connectivity. This can

be observed in Figure 4, which shows the true cokurtosis (panel A)

and edge connectivity (panel B) values (black curves), together with

the expected values of their estimators (red and blue curves,

respectively). Figure 4 also shows the 2:5% and 97:5% percentiles of

the estimators' sampling distributions (dotted lines). The intervals

exclude the value zero only for ν¼5 (and only for large values of ψ ),

which implies that if the estimators are used for testing the null

hypothesis of no fourth-order interaction, the detection probability

will be zero for all values of ν except ν¼5. We conclude that the sta-

tistical uncertainty in the estimators of fourth-order connectivity is

too large for them to be used for analyzing single-subject resting-state

fMRI data, except when the signals strongly deviate from normality

(i.e., when ν¼5).

3.1.3 | Performance of the block bootstrap

Constructing confidence intervals or carrying out hypothesis tests for

higher-order connectivity in practice, requires an approximation of

the estimators' sampling distribution. Although asymptotic results can

be derived (see Appendices A and B), their derivation is based on the

assumption of no auto-correlations, which is generally invalid for fMRI

signals, although the extent to which this assumption is violated will

depend on how the signals are pre-processed and in particular on the

settings of the used band-pass filter. Furthermore, although the null

hypothesis of no higher-order connectivity can in principle be tested

by constructing null-data, the authors are not aware of any method

that yields null-data for this particular hypothesis, unless the data are

Gaussian, linear, and stationary, in which case coherent phase-
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F IGURE 3 Sampling properties of the coskewness estimator. (a) True coskewness as a function of ψ and α. (b) The expected value of the
coskewness estimator as a function of ψ and α, obtained from simulating 104 synthetic functional magnetic resonance imaging (fMRI) data sets
and averaging the estimates. (c) Bias of the coskewness estimator as a function of ψ and α. (d) Standard errors of the coskewness estimator as a
function of ψ and α obtained by computing the sample standard-deviation of the 104 coskewness estimates. (e) Blue curve: Probability density of
the z-scored estimates, obtained by pooling the estimates for all values of ψ and α. Red curve: Standard normal density. (f) Detection probabilities
as a function of ψ and α, obtained by z-tests using a significance level of .05.
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randomization can be used (Prichard & Theiler, 1994). In any case,

null-data cannot be used for constructing confidence intervals.

We thus explore the use of resampling methods, which can, in

principle, be used for testing as well as for constructing confidence

intervals for higher-order connectivity. As described in Section 2.2.2,

we focus on the block bootstrap (Hall et al., 1995; Kreiss &

Paparoditis, 2011) which involves resampling (with replacement)

blocks of consecutive observations, rather than individual observa-

tions, which is done to preserve the auto-correlations in the signals.

Indeed, sampling of individual observations, instead of blocks, will

increase the probability of false rejections. To illustrate this, we gener-

ated synthetic fMRI data without third-order connectivity and tested

the null hypothesis of no third-order connectivity, by resampling indi-

vidual observations. All parameter values were the same as before

(τ¼2 samples, r¼0:4, and N¼1200 samples). Using a significance

level of 0:05, the estimated fraction of rejected null hypotheses

was 0:12�0:01.

We consider the performance of the block bootstrap as a func-

tion of scanning time, which ranged from 300 samples, which is one-

fourth of the scanning time of the HCP data, up to 4800 samples,

which is four times the scanning time of the HCP data. The block-size

for the resampling was set to L¼10 samples. This choice was based

on the fact that the auto-correlation function of the HCP data has a

time-scale of about two samples and hence reduces to zero in roughly

10 samples. In any case, experimenting with different block-sizes

made clear that the performance is not that sensitive to the block-size

as long as it is sufficiently large (results not shown). For each scanning

time, we generated a synthetic fMRI data-set without third-order con-

nectivity, computed the coskewness estimate and generated

B¼1000 bootstrap samples. From the bootstrapped samples, we

estimated the estimators' standard error and used it to test the null-

hypothesis using a z-test. This was repeated 1000 times, which

allowed to estimate the bias in the bootstrap estimates of the

standard-error as well as the probability of rejecting the null hypothe-

sis. The entire procedure was repeated 10 times to assess the level of

uncertainty in the estimates of the bias and the rejection probabilities.

Figure 5a shows the true (black curve) and estimated (blue curve)

standard errors as a function of scanning time. Note that the true

standard errors decrease as the scanning time increases, reflecting the

reduction in statistical uncertainty of the estimator when more data is

available. The figure also shows that the block bootstrap systemati-

cally underestimates the standard errors, although the extent of which

seems to decrease for longer scanning times. This implies that if the

estimated standard errors are used for hypothesis testing, the proba-

bility of rejecting the null hypothesis will be higher than the used sig-

nificance level. This can be observed in Figure 5b, which shows the

estimated rejection rates for the different scanning times. The signifi-

cance level was set at 0:05 and is designated by the horizontal red

line. Although the rejection rates do decrease with increasing scanning

time, they seem to stabilize at a value of around 0.06. Thus,

scanning for longer than about 15min does not substantially decrease

the slightly inflated rejection rate of about 6%. Furthermore, for scan-

ning sessions shorter than about 5min, the rejection rate is substan-

tially higher (about 9%). Based on these results, a tentative rule of

thumb is to use scanning sessions of at least 10min. However, the

performance of the block bootstrap is likely to be sensitive to the

exact settings of the used bandpass filter, since these directly affect

the time-scale of the auto-correlations within the fMRI signals. The

rule-of-thumb, however, also applies to fMRI signals with different

repetition times, because what matters for performance is the
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F IGURE 4 Sampling properties of the cokurtosis and edge connectivity estimators. Top row: True cokurtosis values (black curves), together
with expected values of the plug-in estimator (solid red curves) and the 2:5% and 97:5% percentiles of its sampling distribution (dotted red
curves), as a function of ψ . The panels correspond to different values of ν. Bottom row: Same format but for the edge connectivity. Thus, for
scanning sessions of this duration (14.4min with a TR of 0.72) the fourth order estimators are generally negatively biased, which will lead to a loss
of statistical power in hypothesis testing. Another property is that, except for ν¼5 and large values of ψ , both the cokurtosis and edge
connectivity estimators have very large uncertainties, which prevents the null hypothesis of no fourth-order connectivity to be rejected. This
suggests that they do not allow detection of fourth-order connectivity in single-subject data.
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effective number of samples, which is determined by the time-scale of

the auto-correlations.

3.2 | Empirical fMRI data

3.2.1 | Distributions of higher-order connectivity

We estimated the cortical distributions of the plug-in estimators of

the coskewness, cokurtosis, and edge connectivity at the group-level

using the 94 subjects from the resting-state HCP data (see Section 2.4

for details about the data-set). For comparison, we also considered

the distribution of the second-order correlations. These distributions

give an impression of the typical strength of higher-order correlations

in the data. We estimated the distributions by randomly selecting 104

pairs/triplets/quadruplets of brain regions. For each connectivity mea-

sure, two random selections of 104 pairs/triplets/quadruplets were

made, to verify that the estimated distributions were independent of

the selected regions and hence are accurate estimates of the

distributions.
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F IGURE 5 Performance of the block bootstrap. (a) The black circles correspond to the true standard errors of the coskewness estimator in
the absence of third-order connectivity (i.e., ψ ¼0) for the different scanning times. They were obtained by calculating 105 coskewness estimates
and taking their sample variance. The blue circles correspond to (estimates of) the bootstrap estimates of the standard errors. The small level of
variability in the 10 blue lines shows that the estimates are rather precise. (b) Estimated probabilities of rejecting the null hypothesis (i.e., of
making a type-I error) for different scanning times. The error bars correspond to the standard errors of the probability estimates. The horizontal
red line corresponds to the chosen significance level of .05. In panels (a) and (b), the scanning times included 300 samples and integer multiples of
600 samples up to 4800 samples. Repetition time was 0.72 s.
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F IGURE 6 Group-level distributions of higher-order correlations. (a) Distribution of the second-order correlations obtained by randomly
selecting 104 pairs of brain regions, calculating their sample correlation, and averaging over all 94 subjects. The two curves correspond to two
independent selections of 104 pairs of regions. (b) Black curves: Distribution of coskewness obtained by randomly selecting 104 triplets of brain
regions, calculating their sample coskewness, and averaging over all 94 subjects. The two black curves correspond to two independent selections
of 104 triplets of regions. Orange curves: Distribution of the coskewness obtained from phase-randomized null-data (two independent
realizations). (c) Same format as (b) but for the cokurtosis. Instead of triplets, 104 quadruplets were selected. (d) Same format as (b) but for the
edge connectivity. Instead of triplets, 104 quadruplets were selected.
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Figure 6a shows the distributions of the second-order correla-

tions. The two curves correspond to the two independent selections

of region-pairs. They make clear that the distribution does not depend

on the selected brain regions. Figure 6b (black curves) shows the dis-

tributions of the third-order correlations (i.e., the coskewness). The

values are about an order of magnitude smaller than those of the

second-order correlations. Specifically, for both selections, the aver-

age magnitude of the coskewness, relative to that of the correlations,

is 6%. This value is similar to that reported in (Hlinka et al., 2011) for

the relative magnitude of non-Gaussian second-order connectivity

as measured by mutual information. This shows that, on the group-

level, third-order correlations are relatively small compared to

second-order correlations. The estimates nevertheless are rather

accurate: The average bootstrapped standard error is 0.006. Since

the bootstrapped estimates are approximately normal (results not

shown) this implies that absolute coskewness values larger than

1:96� standard error≈0:01 are significant at a significance level of

α= .05 (uncorrected) which amounts to 38% of the selected triplets.

For comparison, we also computed the distributions from coherent

phase-randomized surrogate data (orange curves in Figure 6b). In line

with the above observation, they show that absolute values of the

coskewness larger than about 0.01 cannot be explained by the Gauss-

ian null hypothesis. Figure 6c shows that practically all significant cos-

kewness values are negative.

Figure 6c shows that the cokurtosis values are also about an

order of magnitude smaller than the second-order correlations (aver-

age relative magnitude of 9% for both selections). The average boot-

strapped standard error is 0.006, which amounts to significance of

59% of the selected quadruplets. Thus, the (uncorrected) threshold

for statistical significance is about 0.01 which is in line with what is

suggested by the null data (orange curves in Figure 6c). In contrast to

the coskewness, all significant cokurtosis values are positive. The dis-

tribution of the coskewness is rather similar to that of the edge con-

nectivity (compare with Figure 6d). Indeed, the Pearson correlation

between the 104 cokurtosis and the edge connectivity values is 0.93

(0.94 for the second selection) which shows that they practically cap-

ture the same features of the fMRI signals. The average bootstrapped

standard error of the edge connectivity estimates is 0.004, which

amounts to significance of 59% of the selected quadruplets.

3.2.2 | Higher-order connectivity maps

In this section we inspect group-level third-order and fourth-order

connectivity maps for several seed regions and compare them to cor-

relation maps. We start with the coskewness maps. Unlike correlation

maps, which are constructed by fixing one seed region and calculating

its correlation with a varying target region, a coskewness map is con-

structed by fixing two seed regions and calculating their coskewness

with a varying target region. We thus selected four homologous pairs

of seed regions in the primary motor cortex, frontal eye-fields (which

is part of the dorsal attention network), precuneus (which corresponds

to the posterior medial node of the default mode network [DMN]),

and the dorsolateral prefrontal node of the frontoparietal network. In

the used cortical parcellation (Glasser, Coalson, et al., 2016), the

selected regions in the precuneus and the dorsolateral prefrontal cor-

tices are labeled “Area 31p ventral” and “Area 8C,” respectively. To

compare the coskewness maps to correlation maps, the latter were

averaged over the respective left and right seed regions.

Figure 7a shows the correlation maps for each of the four pairs of

seed regions. The colors encode the average correlation of the fMRI

signal in each cortical region with those in the respective pairs of seed

regions. The maps were thresholded by bootstrapping the average of

the left- and right-seeded maps over subjects (p < .01, Bonferroni cor-

rected). Thus, the colored regions are those for which the average

correlation with the left and right primary motor cortices is significant

at the chosen threshold. We recognize the motor network (seeds in

primary motor cortex), the dorsal attention network (seeds in frontal

eye-fields), the DMN (seeds in precuneus), and the frontoparietal net-

work (seeds in dorsal prefrontal cortex). Figure 7b, c show, respec-

tively, the raw and thresholded (p < .01, Bonferroni corrected)

coskewness maps, seeded in the same four pairs of regions. The raw

maps are displayed to provide a more complete impression of their

spatial structure, in addition to the rather conservatively thresholded

maps shown in Figure 7c.

The coskewness maps differ from the correlation maps in two

respects. First, they roughly comprise regions that are complementary

to those that are correlated with the seeds regions. For example,

whereas the fMRI signals in the primary motor cortices are predomi-

nantly correlated with those in the sensory cortices (somatosensory,

auditory, and visual) (first panel in Figure 7a) the corresponding cos-

kewness map shows the highest values in the regions that constitute

the DMN (first panel in Figure 7c). For seeds in the frontal eye-fields,

the correlation map mostly covers posterior parietal and dorsal lateral

frontal cortex (second panel of Figure 7a), whereas coskewness is high

in regions that constitute the DMN (second panel of Figure 7c), which

is roughly the complement of the dorsal attention network. Likewise,

for seeds in the dorsal lateral prefrontal cortex, the regions with high

coskewness, such as the motor cortex (third panel of Figure 7c), are

complementary to those that constitute the frontoparietal network

(third panel of Figure 7a). Finally, for seeds in the precuneus, whereas

the correlation maps reflect the DMN (third panel of Figure 7a), the

coskewness is high in the regions that constitute the frontoparietal

network (third panel of Figure 7c).

A second difference between the correlation and coskewness

maps is that, whereas the former is exclusively positive, the latter is

(almost) exclusively negative, at least for the chosen significance level.

As discussed in Section 2.1.1, there are two possible interpretations

of a negative coskewness between three regions: either all three

regions simultaneously undergo extreme deactivations or two of the

three regions simultaneously undergo extreme activations, whereas

the third region simultaneously undergoes extreme deactivations. We

found that the first interpretation is correct in this case, which was

checked by inspecting the signs of the correlations between the trip-

lets of regions: all correlations were non-negative. This shows that

any three regions with significant coskewness engage in simultaneous
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extreme deactivations. Example fMRI signals with high coskewness

are shown in figure 1 of Appendix C.

We next considered fourth-order connectivity maps. We took the

same four homologous region-pairs as above and let two target

regions vary over all homologous region-pairs. The target regions

were restricted to homologous region-pairs to let the number of

hypothesis tests be linear in the number of brain regions and to be

able to visualize the maps on the cortex. In doing this, we implicitly

assume that fourth-order networks consist of homologous regions.

Because this is true for most resting-state networks, it is a reasonable

initial assumption. In any case, it is straightforward to extend the anal-

ysis to non-homologous regions, although the resulting maps are two-

dimensional (i.e., they are matrices) and hence cannot be displayed on

the cortex.

Figure 8a, b show, respectively, the raw and thresholded

(p < .01, Bonferroni corrected) cokurtosis maps for all four pairs

of seed regions. In contrast to the coskewness maps, which were

almost exclusively negative, the cokurtosis maps are exclusively

positive, at least at the chosen significance level. This means

that the fMRI signals in the four constituting regions of a qua-

druplet either undergo coherent fluctuations (i.e., both

activations and deactivations) or split into two anti-correlated

pairs of coherent extreme fluctuations (see Figure 1a for an

illustration). Because the pairwise correlations between the four

regions were all non-negative (results not shown) the fluctua-

tions in all four regions are in fact coherent. Example fMRI sig-

nals with high cokurtosis are shown in figure 2 of Appendix C.

Figure 8c, d show the raw and thresholded edge connectivity

maps (p < .01, Bonferroni corrected) for all four pairs of seed

regions. Although they differ from the cokurtosis maps in their

details, overall they are very similar.

We also assessed if higher-order connectivity can be detected in

single-subject data. As described in detail in Appendix D, this turns

out to be challenging, even when omitting to correct for multiple test-

ing. This finding is in line with our simulation results, which showed

that detection probabilities of third-order connectivity in

single-subject data are quite low, unless the signals are substantially

non-Gaussian (see Figure 3f) and that detection of fourth-order con-

nectivity from single-subject data is practically impossible (see

Figure 4). The reason for this, as suggested by our simulations, is the

high sampling variability of the plug-in estimators of the coskewness,

cokurtosis, and edge-connectivity.

F IGURE 7 Third-order correlation maps on the group-level. (a) Group-level second-order correlation maps seeded in left and right primary
motor cortex, frontal eye-fields, precuneus, and dorsal lateral prefrontal cortex. The maps show the average second-order correlation of all
cortical regions with the left and right homologous seeds. The maps were thresholded at p < .01 (Bonferroni corrected) and subsequently at their
median values (for better visualization). (b) Raw group-level third-order correlation (coskewness) maps for the same four pairs of homologous
seeds as in (a). (c) Thresholded group-level third-order correlation (coskewness) maps for the same four pairs of homologous seeds at in Panel (a).
The maps were thresholded at p < .01 (Bonferroni corrected).
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3.2.3 | Clinical application (multiple sclerosis)

No difference in within-DMN second-order correlations was observed

between groups (F(3,416.8) = 0.76, p = .519, p-adj = 1.000). How-

ever, dissimilar second-order correlations between the FPN and DMN

were observed (F(3,417) = 6.56, p < .001, p-adj = .002), with the cog-

nitively impaired group showing increased connectivity compared to

all other groups (all p > .015) and cognitively preserved patients addi-

tionally showing increased second-order correlations compared to

healthy controls (p = .010). No other significant differences were

observed (all p > .018 and p-adj > .126). Therefore, higher-order con-

nectivity will be assessed between the DMN and FPN (see Figure 9).

Third-order connectivity between the FPN and DMN can be

defined using 2 nodes in the DMN and 1 in the FPN, or vice-versa.

We observed strong multicollinearity between these two combina-

tions (VIF = 10.25), so we used the mean of both to characterize

DMN-FPN coskewness. This measure of mean DMN-FPN coskew-

ness did not differ between groups (F(3,417) = 1.94, p = .123).

Fourth-order connectivity can be defined using three nodes in

the DMN and one in the FPN, three in the FPN and one in the DMN,

and by two nodes in both networks. We observed high multicollinear-

ity for cokurtosis (VIF > 18.07) as well as edge connectivity

(VIF > 13.56), so mean values across all three combinations were

used. Mean DMN-FPN cokurtosis was different between groups (F

(3,417) = 4.30, p = .005), with CI (cognitively impaired) showing

increased DMN-FPN cokurtosis compared to all other groups (all

p < .033). Mean DMN-FPN edge connectivity was not different

between groups (F(3,417) = 2.27, p = .080).

F IGURE 8 Fourth-order correlation maps on the group-level. (a) Raw group-level cokurtosis maps seeded in left and right primary motor
cortex, frontal eye-fields, precuneus, and dorsal lateral prefrontal cortex. The maps show the cokurtosis of all homologous region-pairs with the
left and right homologous seed regions and hence are symmetric across hemispheres by construction. (b) Thresholded group-level coskewness
maps for the same four pairs of homologous seeds as in (a). The maps were thresholded at p < .01 (Bonferroni corrected). (c) Same format as
(a) but for the edge connectivity. (d) Same format as (b) but for the edge connectivity.
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A multiple linear regression model was used to predict average

cognition scores, with the following independent variables being

added in consecutive steps: (1) age, sex and education, (2) pairwise

global and DMN-FPN connectivity, and finally (3) global and

DMN-FPN cokurtosis (see Table 1). In the final model, patients' aver-

age cognition was significantly predicted (adj. R2 =0.146, F(7,322)

F IGURE 9 Higher-order default-mode network–frontoparietal network (DMN–fPN) connectivity in multiple sclerosis. DMN-FPN pairwise
connectivity and cokurtosis were increased in cognitively impaired (CI) patients compared to all other groups. Pairwise connectivity was
additionally increased in preserved patients (CP) compared to healthy controls (HC). The colored points indicate the individual connectivity
strengths that were observed for each individual and the distribution over all points is depicted to the left of them. These distributions clearly
show non-normality for the higher-order measures, so these were log-transformed in the statistical analyses.

TABLE 1 Fourth-order DMN-FPN cokurtosis explained significant additional variance in the average cognition of MS patients.

Models variables Step 1: Clinical variables β (p-value) Step 2: +Correlation β (p-value) Step 3: +Cokurtosis β (p-value)

Age �.211 (<.001) �.199 (<.001) �.194 (<.001)

Sex �.135 (.010) �.157 (.004) �.162 (.003)

Education .235 (<.001) .230 (<.001) .235 (<.001)

Global correlation .121 (.171) .142 (.108)

DMN-FPN correlation �.071 (.406) �.027 (.748)

Global cokurtosis .052 (.484)

DMN-FPN cokurtosis �.217 (.004)

Adj. R2 = 0.120 Adj. R2 = 0.121

p-change = .364

Adj. R2 = 0.146
p-change = .003

Abbreviations: DMN–fPN, default-mode network–frontoparietal network; MS, multiple sclerosis. Variables that added significantly to the model (i.e., p-

value <.05) were highlighted by making them bold. Similarly, models that explained additional variance beyond the previous step were made bold as well.
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=9.01, p< .001) using the following variables: age (β=�.194,

p< .001), sex (β=�.162, p= .003), education (β= .220, p< .001) and

DMN-FPN cokurtosis (β=�.217, p= .004). The change in explained

variance from step 1 (adj. R2 =0.120) to step 2 (adj. R2 =0.121) did

not increase significantly (R2-change=0.01, F(2,324)=1.02, p= .364).

However, the explained variance did increase from step 2 to step

3 (R2-change=0.03, F(2,322)=5.76, p= .003).Further, also adding all

other pairwise connectivity values in the second step did not affect

the outcome, as none of those values significantly predicted cognition

(all p< .191) whereas DMN-FPN cokurtosis still did (β=�.209,

p= .007) and the explained variance still increased from step 2 to step

3 (R2-change=0.03, F(2,316)=5.03, p= .007).

4 | DISCUSSION

4.1 | Summary and significance

In this study we proposed measures for quantifying genuine higher-

order connectivity in fMRI data, analyzed the performance of plug-in

estimators using a non-Gaussian generative model of fMRI signals,

compared two methods for statistical inference, and applied the meth-

odology to two resting-state fMRI datasets. The main advantage of

using multivariate cumulants over the currently used edge connectiv-

ity (Faskowitz et al., 2020) is that multivariate cumulants vanish if

higher-order connectivity can be reduced to pairwise connections

(i.e., is redundant), whereas this is not the case for the edge connectiv-

ity (Novelli & Razi, 2022). With respect to the simulations, our main

conclusions are that, whereas third-order connectivity can be

detected in single-subject data from single scanning sessions, fourth-

order connectivity can only be detected if it is unrealistically strong.

Furthermore, whereas for scanning sessions of about 5 min, block

bootstrapping leads to inflated false-positive rates (9% at α= .05), for

sessions of 10min or longer, the errors rates are only slightly inflated

(6% at α= .05). With respect to the application to fMRI data, we dem-

onstrated the existence of third- and fourth-order functional networks

on the group-level that are complementary to known (second-order)

resting-state networks. Finally, we observed that higher-order con-

nectivity, especially based on fourth-order cumulants, was stronger in

patients with MS who show cognitive impairment. Higher-order con-

nectivity explained additional variance beyond pairwise connectivity,

hence showcasing the relevance of non-redundant higher-order con-

nections in the study of clinical samples.

4.2 | Results on the HCP data-set

Concerning the group-level analysis, we estimated the cortical distri-

butions of third- and fourth-order correlations and compared them

with that of the second-order correlation. The values of the third- and

fourth-order correlations were comparable with each other and about

an order of magnitude smaller than the values of the second-order

correlation. This observation is in line with an earlier study (Hlinka

et al., 2011) in which the mutual information and its Gaussian part

were compared on resting-state fMRI data. The authors of (Hlinka

et al., 2011) found that the portion of the mutual information that

was not captured by its Gaussian part was rather small (about 5%) and

concluded that the Gaussian part is sufficient for analyzing (pairwise)

functional connectivity. Whereas the focus of (Hlinka et al., 2011) was

on the effects of non-Gaussianity on conventional functional connec-

tivity analysis, the focus of our study is on the deviations from Gaus-

sianity themselves and their cortical organization. From this point of

view, the following observations are of interest.

First, all significant third-order correlations were negative. In

Section 3.2.2, we established that this reflects the fact that the fMRI

signals of all three brain regions undergo simultaneous extreme

(i.e., non-Gaussian) deactivations. This implies that the signals them-

selves are (negatively) skewed, since symmetric signals cannot have

non-zero moments (see Appendix E). In other words, deactivations are

more extreme than activations. Furthermore, the correlation between

these extreme deactivations cannot be explained by the pairwise cor-

relations between the three pairs of regions that constitute the triplet.

In this respect, the triplet should be regarded as an integrated func-

tional unit that cannot be decomposed. Concerning the fourth-order

correlations, all significant cokurtosis and edge connectivity values

were positive and we established that this reflects the fact that the

fMRI signals of all four brain regions undergo simultaneous extreme

fluctuations that cannot be explained by the pairwise correlations

between the six constituting pairs of regions. In this respect, the qua-

druple should also be regarded as an integrated functional unit that

cannot be decomposed.

We also explored the spatial organization of group-level third-

and fourth-order correlations by using appropriate seed-based corre-

lation maps. Third-order correlation maps were constructed by fixing

two (homologous) reference regions and varying a third target region

over the cortex. We considered four pairs of seed regions, each of

which is part of a well-known resting-state network. The first finding

is that, for each of the four pairs of seed regions, there are several cor-

tical areas that have significant third-order correlations with the seed

regions. These regions thus survived the tight statistical threshold of

α = .01 with Bonferroni correction for conducting 360 hypothesis

tests corresponding to the 360 target regions. Similar observations

apply to the fourth-order correlations. We therefore conclude that,

although higher-order correlations in resting-state fMRI data are

rather weak, they are a robust feature of the data, at least on the

group-level.

A second finding is that the regions with significant coskewness

with the seed regions, roughly form the complement of the regions

with significant second-order correlation with the seed regions. This

was observed for all four pairs of seed regions. For example, for seeds

in the primary motor cortices, regions with significant second-order

correlation included premotor and sensory (somatosensory, visual,

and auditory) regions, whereas the regions with significant third-order

correlation only included association regions (default mode regions).

This observation demonstrates that coskewness maps capture aspects

of the functional organization of spontaneous cortical fluctuations
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that are distinct and complementary to those provided by second-

order correlation maps.

4.3 | Results on the MS data-set

Concerning the analysis of the MS dataset, we observed increased

pairwise (consistent with previous analyses (Meijer et al., 2017)) and

cokurtosis between the DMN and FPN in cognitively impaired

patients compared to all other groups. No differences between groups

were observed for higher-order connectivity metrics investigated in

this work (coskewness and edge connectivity). The specific effects of

DMN-FPN cokurtosis and not of any other higher-order metric are

interesting and highlight the importance of looking at these orders

individually, which is consistent with previous observations using

higher-order connectivity based on information theory (Herzog

et al., 2022). With respect to third- versus fourth-order connectivity,

one important difference is the sensitivity of third-order connectivity

to deactivations which might be less relevant to cognitive impairment.

Deactivations might, in theory, put less computational pressure on the

network compared to coactivations and thereby might not contribute

to an overload of brain hubs (Schoonheim et al., 2022). Although

DMN-FPN edge connectivity was not different between groups, the

effect did show comparable directionality to DMN-FPN cokurtosis,

which is unsurprising given the strong overlap between the two mea-

sures. The slightly heightened sensitivity of cokurtosis might be due

to the fact that edge connectivity depends on the (common) correla-

tion between the edge signals from different brain regions, which may

also include pairwise (Gaussian) terms, in contrast to cokurtosis,

where only statistically genuine fourth-order connectivity is taken into

account. Importantly, DMN-FPN cokurtosis explained additional vari-

ance beyond pairwise connectivity, which further emphasizes the clin-

ical relevance of higher-order connectivity. For MS specifically, these

results reiterate that functional reorganization might play an impor-

tant role in cognitive impairment (Fleischer et al., 2019; Schoonheim

et al., 2022). Nevertheless, to be sure that higher-order connectivity

captures functional reorganization in MS, more work is needed that

investigates the interaction between increased higher-order connec-

tivity and structural disconnections. Additionally, future studies could

try to disentangle how the different orders of connectivity relate to

distinct biological processes, as this could help interpret why we only

observed differences in DMN-FPN cokurtosis (fourth-order

connectivity).

4.4 | Higher-order connectivity in single-
subject data

Although robust higher-order networks could be extracted at the

group-level, it was considerably more difficult to extract them from

single-subject data, due to the large variance of the plug-in estimators

(see Appendix D). A possible way to deal with this is to consider para-

metric estimators, since these usually have smaller variance than non-

parametric estimators. This requires selecting a parametric family of

probability distributions that generalize the multivariate normal distri-

bution and that allow multivariate cumulants to be calculated in

closed-form in terms of the model parameters. Third-order connectiv-

ity requires a generalization of the three-dimensional normal distri-

bution that allows for asymmetry and hence can model data with

non-zero coskewness. Fourth-order connectivity requires a generali-

zation of the four-dimensional normal distribution that allows for

heavy or light tails and hence can model data with non-zero cokurto-

sis. Families of probability distributions with these properties are the

generalized skew-elliptical (Branco & Dey, 2001) and elliptical distri-

butions (Cambanis et al., 1981). However, it is unclear if these

distributions can adequately model triplets and quadruplets of

resting-state fMRI signals and how accurately their parameters can

be estimated from single-subject data.

4.5 | Cokurtosis versus edge connectivity

In this study, we considered two fourth-order connectivity measures,

namely, the cokurtosis and the recently proposed edge connectivity

(Faskowitz et al., 2020). As pointed out in (Novelli & Razi, 2022), edge

connectivity cannot directly be used as a measure for connectivity

between edges, because it might reflect pairwise

connectivity between the four regions that constitute the edges. In

this sense, it is redundant and needs to be adjusted by subtracting its

redundant (i.e., Gaussian) part. Which of the two measures, cokurtosis

or the adjusted edge connectivity, should be preferred? In our genera-

tive model of fMRI signals, the cokurtosis and adjusted edge connec-

tivity depend in a similar way on the model parameters and, in this

sense, measure the same quantity. Furthermore, their plug-in estima-

tors behave comparably, both in simulated and empirical fMRI data,

although their connectivity maps differ in some details. In the clinical

application, however, the cokurtosis, but not the adjusted edge con-

nectivity, picked up a difference between groups. Although one of the

advantages of edge connectivity, as defined in (Faskowitz

et al., 2020), is that it ranges between �1 and 1, this is not true any-

more for its adjusted version. From a practical perspective, therefore,

neither of the measures is to be preferred over the other. From a the-

oretical perspective, the cokurtosis is perhaps preferable, because it is

simpler and can directly be generalized to orders higher than four. A

more complete answer to this question will likely depend on the

results of future fMRI studies.

4.6 | Do fMRI signals have finite moments?

A potential issue is that the multivariate moments, in terms of which

the higher-order connectivity measures are defined, are infinite. This

issue, however, is not particular to higher-order multivariate moments,

but also applies to first- and second-order univariate moments. For

example, if resting-state fMRI signals follow a t-distribution with two

degrees of freedom, their variance is infinite and this would
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complicate any statistical inference that involves the signals' vari-

ances. Although it is generally not possible to decide, based on signals

of finite length, if the signals' moments are finite or infinite, an indica-

tion can be obtained by plotting the sample moments as a function of

the sample size (Granger & Orr, 1972). Because the sample moments

are consistent and their sampling variability approaches zero when

the sample size becomes large (see Appendices A and B), the finite-

ness of the signals' theoretical moments implies that its sample

moments converge to finite values. In Appendix F, we plot the first

four moments of a large number of resting-state fMRI signals. The

moments indeed seem to converge to finite values, which provides

some evidence that the theoretical moments up to order four are

indeed finite. A related issue is that the moment generating function

of multivariate fMRI signals might not exist. In particular, the finite-

ness of the signals' moments is not a sufficient condition for the exis-

tence of its moment generating function. However, the moment

generating function was only used in this study to introduce higher-

order moments and cumulants in a unified way and is in no way

essential. The only requirement for the higher-order connectivity

measures to be well-defined is that the moments up to order four are

finite.

4.7 | Connections to information theory and
topological data analysis

This work relates to two other higher-order interaction approaches:

information theory and topological data analysis (TDA). In information

theory, synergistic interactions are defined as interactions that only

exist in high order but not necessarily in pairwise. In contrast, our work

investigates higher-order interactions as measured by multivariate

cumulants. Our results suggest that higher-order connectivity is related

to the DMN, which is consistent with recent developments in informa-

tion theory for neuroscience (Luppi, Mediano, Rosas, Holland, Fryer,

O'Brien, et al., 2022; Santos et al., 2023). Considering the similarities

between multiple approaches for quantifying higher-order interactions,

exploring their relationships in future research would be valuable. Some

key issues that warrant investigation include comparing the sensitivity

and specificity of information-theoretic measures and multivariate

cumulants in detecting higher-order interactions in fMRI data, assessing

the extent to which synergistic interactions identified through

information-theoretic approaches overlap with those identified using

multivariate cumulants, and investigating the potential for combining

statistical and information-theoretic approaches to develop a unified

framework for characterizing higher-order connectivity in the brain.

Since any random variable (with finite moments) can be expressed in

terms of cumulants, this could provide a foundation for connecting sta-

tistical and information-theoretic approaches to higher-order interac-

tions in complex systems. Establishing such connections may lead to a

more comprehensive understanding of higher-order interactions in

fMRI data and may offer new avenues for investigating neuropsychiat-

ric diseases and cognitive neuroscientific experiments.

The application of higher-order cumulants to TDA represents a

potential follow-up of our work. Central to TDA is the construction

of simplicial complexes from the observed data and comprise

nodes, edges, triangles, tetrahedral, and their higher-order ver-

sions. Simplicial complexes are typically derived from pairwise con-

nectivities and identified by clique computations (Centeno

et al., 2022). However, it can be argued that the basis for these

structures could be substantially improved by utilizing simplicial

complexes derived from high-order cumulants that exclude redun-

dant second-order correlations. We believe that this may not only

refine our understanding of simplicial complexes, but also offer

insight into other complex structures like hypergraphs. Therefore,

the potential of higher-order cumulants in developing more accu-

rately informed simplicial complexes and hypergraphs deserves

further investigation.

A related issue is the distinction between statistical and topo-

logical higher-order connectivity. The first, the central focus of this

work, is concerned with whether there exist statistical dependen-

cies between more than two variables, that cannot be reduced to

dependencies between pairs of variables. However, an interaction

can be topologically higher-order, even when the underlying mech-

anisms are pairwise (Rosas et al., 2022). For instance, higher-order

effects can be observed in a pairwise computational model of

whole-brain dynamics (Gatica et al., 2022). In this sense, measures

that are based on pairwise connectivity, such as cliques, cluster

coefficients, communities or modularity (Centeno et al., 2022), can

yield different results if one defines the weights of the higher-order

structures via higher-order moments, regardless of their statistical

origin. Finally, in our study, we focused on higher-order connectiv-

ity at the level of individual triples/quadruplets, and did not con-

sider the topological structure of higher-order networks, as

characterized by simplicial complexes or hypergraphs (Bick

et al., 2022). Our results indicate that coskewness and cokurtosis

could define reliable weights for constructing hyperedges and sim-

plicial complexes.
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