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A more unstable resting-state functional
network in cognitively declining multiple
sclerosis

®Tommy A. A. Broeders,I (®Linda Douw,I Anand J. C. Eijler's,I Iris Dekker,2
Bernard M. ). Uitdehaag,2 Frederik Ba.r'khof,?"4 Hanneke E. Hulst,I ®Christiaan H. Vinkers,"5
®Jeroen J. G. Geurts' and ®Menno M. Schoonheim'

Cognitive impairment is common in people with multiple sclerosis and strongly affects their daily functioning. Reports have linked
disturbed cognitive functioning in multiple sclerosis to changes in the organization of the functional network. In a healthy brain, com-
munication between brain regions and which network a region belongs to is continuously and dynamically adapted to enable adequate
cognitive function. However, this dynamic network adaptation has not been investigated in multiple sclerosis, and longitudinal net-
work data remain particularly rare. Therefore, the aim of this study was to longitudinally identify patterns of dynamic network re-
configurations that are related to the worsening of cognitive decline in multiple sclerosis. Resting-state functional MRI and
cognitive scores (expanded Brief Repeatable Battery of Neuropsychological tests) were acquired in 230 patients with multiple sclerosis
and 59 matched healthy controls, at baseline (mean disease duration: 15 years) and at S-year follow-up. A sliding-window approach
was used for functional MRI analyses, where brain regions were dynamically assigned to one of seven literature-based subnetworks.
Dynamic reconfigurations of subnetworks were characterized using measures of promiscuity (number of subnetworks switched to),
flexibility (number of switches), cohesion (mutual switches) and disjointedness (independent switches). Cross-sectional differences be-
tween cognitive groups and longitudinal changes were assessed, as well as relations with structural damage and performance on spe-
cific cognitive domains. At baseline, 23% of patients were cognitively impaired (>2/7 domains Z < —2) and 18% were mildly
impaired (>2/7 domains Z < —1.5). Longitudinally, 28% of patients declined over time (0.25 yearly change on >2/7 domains based
on reliable change index). Cognitively impaired patients displayed more dynamic network reconfigurations across the whole brain
compared with cognitively preserved patients and controls, i.e. showing higher promiscuity (P =0.047), flexibility (P=0.008) and
cohesion (P=0.008). Over time, cognitively declining patients showed a further increase in cohesion (P =0.004), which was not
seen in stable patients (P =0.544). More cohesion was related to more severe structural damage (average »=0.166, P=0.015)
and worse verbal memory (r=—0.156, P=0.022), information processing speed (r=—0.202, P =0.003) and working memory (r
=-0.163, P=0.017). Cognitively impaired multiple sclerosis patients exhibited a more unstable network reconfiguration compared
to preserved patients, i.e. brain regions switched between subnetworks more often, which was related to structural damage. This shift
to more unstable network reconfigurations was also demonstrated longitudinally in patients that showed cognitive decline only. These
results indicate the potential relevance of a progressive destabilization of network topology for understanding cognitive decline in mul-
tiple sclerosis.
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multiple sclerosis; network; connectivity; dynamic; cognition

CI = cognitively impaired; CP = cognitively preserved; DAN = dorsal attention network; DMN = default-mode
network; EDSS =Expanded Disability Status Scale; FPN = fronto-parietal network; HC = healthy control; IPS =information
processing speed; MCI =mildly cognitively impaired; rs-fMRI = resting-state functional MRI; SMN = sensorimotor network; TE =
echo time; TR = repetition time; VAN = ventral attention network
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Dynamic network reconfigurations and cognition in MS

Introduction

People with multiple sclerosis frequently suffer from cogni-
tive impairment, which severely affects daily functioning.'
In multiple sclerosis, neuro-axonal damage occurs through-
out the brain, and the structural brain network frequently
becomes disconnected.” The structural brain network char-
acterizes the anatomical links between brain regions and re-
presents the main pathways of communication between
brain regions, whereas the functional network represents
the presumed strength of communication over these anatom-
ical pathways (i.e. functional connectivity),” which can be
characterized even in the absence of an explicit task (i.e.
resting-state). In theory, accumulating structural network
damage in multiple sclerosis could hamper effective integra-
tion of information across the brain and thereby affect nor-
mal cognitive functioning.

In health, the functional brain network as a whole is hier-
archically organized into communities (i.e. subnetworks) of
brain regions that are functionally coupled and differentially
involved in specific cognitive processes.*’ Previous work has
shown that these subnetworks on average become structural-
ly more segregated, starting in early stages of multiple scler-
osis®™® and worsening in later disease stages. This progressive
disconnection between subnetworks has been related to
worse cognitive function” and could potentially be due to
damage to the particularly vulnerable long-range connec-
tions necessary for integration of information between sub-
networks. When examining the functional connectivity
between brain regions in multiple sclerosis, some studies sug-
gested more segregated subnetworks in cognitively impaired
(CI) patients as well,'%'" while subnetworks like the default-
mode and frontoparietal networks paradoxically become
more strongly connected to the rest of the network.'*'3
Thus, as structural disconnection worsens in these patients,
functional connectivity seems to change in rather complex
manner. There is ambiguity in interpreting these findings
from the perspective of functional reorganization and asses-
sing the balance between compensatory and maladaptive
processes. In part, this may be caused by studying only time-
averaged (i.e. static) functional connectivity; more recently
studies have investigated the time-varying characteristics of
the functional network. Such dynamic adaptation of the
communication between (sub)networks can be investigated
during a resting-state functional MRI (rs-fMRI) scan and
the few studies applying dynamic functional imaging in mul-
tiple sclerosis have indicated that default-mode areas seem
‘locked’ in a highly connected state in patients with cognitive
impairment.'*"> Another study showed that in CI multiple
sclerosis patients, there is a reduction of switches between
specific network conformations (i.e. states).'®

These approaches have been highly valuable in establish-
ing the concept of a more rigid or ‘stuck’ network in multiple
sclerosis patients with cognitive impairment. However, a dy-
namic approach has not been used to specifically study the
time-varying adaptation of subnetworks. These subnet-
works are continuously and dynamically reconfigured in
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healthy individuals, especially when performing tasks that
requires a higher level of integration of information across
multiple subnetworks.'”'® Now, methodological advances
allow for better characterization of these reconfigurations
of subnetworks and make it possible to discern whether
brain regions are reconfigured in unison or individually.'*2°
Consequently, by investigating the brain from such a dynam-
ic network perspective it becomes possible to quantify how
information is integrated across subnetworks. This approach
has, for example, shown that subnetworks became less stable
in schizophrenia despite other reports showing that the net-
work as a whole became more rigid,?"**> while such an ap-
proach has not been used in multiple sclerosis. It would,
therefore, be interesting to investigate whether the effective
integration of information across subnetworks is limited by
reduced  reconfigurations in  multiple  sclerosis.
Alternatively, the network might actually become more un-
stable in multiple sclerosis, increasing reconfigurations. As
such, this network concept could provide a new framework
to describe functional network changes in multiple sclerosis
and their impact on cognition.

Longitudinal studies are imperative to investigate whether
dynamic network alterations relate to cognitive decline in
multiple sclerosis, but such data remains rare. Therefore,
the aim of this study was to investigate whether cognitive de-
cline in multiple sclerosis is related to altered (cross-sectional
and longitudinal) dynamic reconfiguration of subnetworks
within the functional brain network. Dynamic network
changes and cognitive performance were evaluated in
rs-fMRI data from 230 patients with multiple sclerosis and
59 healthy individuals with two measurements at a 5-year
interval. We hypothesized that multiple sclerosis patients
with cognitive impairment would show reduced network
adaptation (i.e. less reconfigurations) and that this would ex-
acerbate over time in cognitively declining patients only.

Materials and methods

This study involves a retrospective analysis of prospectively
attained longitudinal data from the Amsterdam multiple
sclerosis cohort,”>** including a total of 332 multiple scler-
osis patients and 96 healthy controls (HCs) with available
functional MRI data who were recruited between 2008
and 2012.'271%2%-2% Eunctional network dynamics in these
participants was described previously.'* In total, 234 mul-
tiple sclerosis patients and 60 HCs returned for a S-year
follow-up between 2014 and 2017, of whom rs-fMRI and
neuropsychological assessment was available at both time
points for 230 patients (48 4+ 11 years; 83 male) and 59
HCs (46 + 10 years; 28 male). Approval was obtained
from the local institutional ethics review board and written
informed consent was provided by all participants. All pa-
tients were diagnosed with clinically definite multiple scler-
osis according to the 2010 revised McDonald criteria,*°
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were relapse-free without steroid treatment for at least 2
months before participation and had no history of or current
psychiatric and/or neurological disease besides multiple
sclerosis. The Expanded Disability Status Scale (EDSS) was
used to determine physical disability. Fatigue was deter-
mined in a subset of patients (N =123) using the Checklist
of Individual strength (CIS-20r), by summing all subdomain
scores. Baseline rs-fMRI data of the Amsterdam multiple
sclerosis cohort has previously been reported,'* but longitu-
dinal rs-fMRI has not been investigated before.

Neuropsychological evaluation was performed on the same
day as the MRI examination, using an expanded Brief
Repeatable Battery of Neuropsychological tests®! as previ-
ously described.? In short, performance on these tests was
aggregated into seven cognitive domains and adjusted for
age, sex and education based on the residuals of these vari-
ables in a matched HC cohort®? and transformed to z-scores
at each time-point. Cognitive domains included executive
functioning (concept shifting test), verbal memory (selective
reminding test), information processing speed (IPS; symbol
digit modalities test), verbal fluency (word list generation),
visuospatial memory (spatial recall test), working memory
(memory comparison test) and attention (Stroop colour-
word test). The z-scores from these cognitive domains were
averaged to produce a summary value of average cognition,
which is only used to explore the relation between network
dynamics and cognition and not to classify patient groups.
Classification of CI patients was defined as scoring 2 stand-
ard deviations (SDs) or more below HCs on at least two cog-
nitive domains.'? Patients that scored between 1.5 and 2 SDs
below HCs on two or more cognitive domains were regarded
as mildly cognitively impaired (MCI); all other patients were
denoted as cognitively preserved (CP). The same approach
was applied again to classify patients based on the follow-up
data, these classifications were exclusively used for a valid-
ation analysis.”* Classification of longitudinal cognitive
change has been described previously** and was based on
the practice-corrected reliable change index®* adjusted for
the time-interval between baseline and follow-up. Patients
with yearly change rates of more than 0.25 on two or more
cognitive domains were considered cognitively declining
and all others as cognitively stable.

All scanning was performed using a 3 T whole-body MRI
scanner (GE Signa-HDxt, Milwaukee, WI) with an 8-chan-
nel phased-array head coil. The scanner underwent a major
upgrade between baseline and follow-up, which was cor-
rected for using time-point specific z-scores based on the dis-
tribution of HCs for all longitudinal analyses, as reported
previously.”* The scanning protocol included a 3D
T-weighted (3DT1) fast-spoiled gradient-echo sequence
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[repetition time (TR)/echo time (TE)=7.8/3 ms; inversion
time =450 ms; flip angle =12°; sagittal slice thickness=
1.0 mm; in-plane resolution=0.9 x 0.9 mm], a 3D
T,-weighted fluid-attenuated inversion recovery (FLAIR) se-
quence (TR/TE=8000/125 ms; inversion time=2350 ms;
sagittal slice thickness=1.2 mm; in-plane resolution=
1.0 x 1.0 mm), a rs-fMRI echo planar imaging sequence
(202 volumes; TR/TE =2200/35 ms; flip angle = 80°; axial
slice thickness=3 mm, contiguous; in-plane resolution =
3.3 x 3.3 mm) and a diffusion tensor imaging sequence using
five volumes without directional weighting (b =0 s/mm?)
and 30 with non-collinear diffusion gradients (b= 1000
s/mm?, TR/TE=13000/91 ms, flip angle =90°, axial slice
thickness = 2.4 mm, contiguous; in-plane resolution =2 x
2 mm).

White matter lesion segmentation was performed on the
FLAIR images,”” and masks were linearly registered to
3DT1-space for lesion filling.*® The rs-fMRI images were
pre-processed with the MELODIC pipeline (FSL 5, fmri-
b.ox.ac.uk/fsl), including the removal of the first two vo-
lumes, motion correction, slice-time correction, brain
extraction and 4 mm Gaussian smoothing. Subsequently,
ICA-AROMA (v0.4-beta)®” was used for automatic removal
of residual motion artefacts. Regression of mean white mat-
ter and cerebrospinal fluid signal, high-pass temporal filter-
ing, boundary-based registration to 3DT1 images and
co-registration and resampling to 4 mm Montreal
Neurologic Institute (MNI-152) standard space was applied.

Markers of structural damage in multiple sclerosis patients
have previously been quantified for this cohort.”® In short,
baseline deep grey matter volume was calculated using
FIRST segmentations and normalized cortical grey matter
volume by subtracting the FIRST segmentations from the
SIENAX grey matter segmentation; both were normalized
for head size. Lesion segmentations were used to determine
white matter lesion volume. Diffusion tensor image process-
ing as performed using FMRIB’s Diffusion Toolbox and in-
cluded motion and eddy distortion correction, followed by
diffusion tensor fitting. Fractional anisotropy (FA) was cal-
culated for each voxel and non-linearly registered to the
FMRIBS58_FA template skeleton and the highest FA value
perpendicular to all voxels of the skeleton were projected
onto the skeleton. The average FA over the whole skeleton
signified overall white matter integrity.

All 210 cortical regions from the Brainnetome atlas®® were
combined with 14 deep grey matter regions segmented using
FIRST, which were transformed to standard space using



Dynamic network reconfigurations and cognition in MS

inverted registration parameters of the 3DT1 scans. Voxels
that represented white matter or cerebrospinal fluid (based
on SIENAX segmentations) or showed distorted rs-fMRI sig-
nal were identified and excluded from the analysis.'”
Regions that had <30% residual coverage after this step
was discarded (the bilateral orbitofrontal and nucleus ac-
cumbens). Signal intensity was averaged within each brain
region. In the end, all regions were assigned to one of seven
well-known resting-state subnetworks* based on maximum
overlap: the default-mode network (DMN), fronto-parietal
network (FPN), dorsal attention network (DAN), ventral at-
tention network (VAN), visual, sensorimotor network
(SMN); all deep grey matter regions were grouped into one
separate subnetwork. Of all regions that were classified as
the ‘limbic network’, only two regions showed sufficient sig-
nal. Thus, this network was removed from further analysis,
leaving 7 networks and 190 brain regions per participant.

After deriving time-series, functional connectivity was deter-
mined using correlation analysis for a range of windows
within each individual time-series to assess the dynamic net-
work reconfiguration of functional networks. We used a
sliding-window approach®” using a window of 60's and a
step-size of 10s (yielding 27 windows) as has been sug-
gested*® and as this size was found to capture the full range
of dynamic network reconfiguration.*! Within each window,
connectivity strength was calculated on a patient level be-
tween all regions using Fisher r-to-z transformed Pearson
correlations (made absolute). Then, for each window, sub-
network assignment was iteratively re-evaluated using the as-
signment quality (Q), which was defined as the average
connectivity strength of region i to other regions within the
same assigned network (C;ithin) minus the average connectiv-
ity strength to all remaining regions (Cpegween) divided by the
sum of the two; Le. Qi = (Cwithin - Cbetween)/( Cwithin +
Chetween)- In each iteration, (a) the brain region showing the
worst assignment quality of the entire network was identified
and (b) reassigned to the subnetwork it connects to most
strongly (see Fig. 1A) using an in-house written script in
MATLAB 2020b (Natick, Massachusetts, USA) that is ac-
cessible on GitHub (https:/github.com/taabroeders/Recon_
Dyn_MS/blob/main/CommunityDetection.m) This was re-
peated until the same brain region was selected in two succes-
sive iterations, indicating that further optimization was not
possible.

Based on the dynamic subnetwork assignment, patterns of
how regions were reassigned between subnetworks during
the scan were first described using the terms ‘promiscuity’
and “flexibility’ based on the Dynamic Graph Metrics tool-
box (see Fig. 1B).** Promiscuity signifies the number of
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subnetworks a node participates in across all windows.
Flexibility describes the number of reconfigurations a node
makes, regardless of which subnetwork a region switches
to or from. These two metrics were determined for each brain
region and averaged over all regions initially assigned to the
same subnetwork. Subsequently, the number of reconfigura-
tions (i.e. flexibility) can be further differentiated using the
terms ‘cohesion’ and ‘disjointedness’. Cohesion describes
the number of times a node reconfigures from one subnet-
work to another subnetwork together with another node
(i.e. a mutual switch), whereas disjointedness describes the
number of times a node switches between subnetworks indi-
vidually (i.e. an independent switch). These parameters were
used to discern whether either of the two best describes a
change in flexibility, thus were treated as post hoc explora-
tions beyond effects of flexibility. All reconfiguration para-
meters were quantified per brain region and averaged over
all regions that belong to the same network, resulting in seven
values per participant. These values were transformed to
z-scores based on the distribution of HCs at each time-point,
to correct for the scanner upgrade, and these z-scores were
averaged over all networks to represent global dynamics.

Recent work has highlighted the importance of additional
validation steps of dynamic analyses using null models, to
evaluate whether or not effects are due to random noise or
static connectivity changes. A null-distribution data was cre-
ated by phase-randomization of the original time-series after
Fourier-transformation,*® after which the entire dynamic
pipeline was performed. The code for phase-randomization
is available on GitHub (https:/github.com/taabroeders/
Recon_Dyn_MS/blob/main/Generate_surrogate.m).  This
process was repeated and analysed across 50 randomization
runs, the average network reconfiguration metrics over all
reconfiguration runs were calculated per subnetwork per
participant to be used as null model comparisons. In add-
ition, the effects of window size and shape were explored
by calculating dynamic reconfiguration parameters using a
shorter window-size of 44 s (as has been used previously'?),
as well as using a tapered instead of a square window shape
by calculating weighted correlation coefficients using a
Gaussian shape (=23 TR).**

Statistical analyses were performed in IBM SPSS version 26
(Armonk, NY, USA). First, ANOVAs and y” tests were per-
formed to compare baseline clinical and demographic vari-
ables. Next, linear mixed models were used to compare
baseline promiscuity and flexibility between cognitive
groups (HC, CP, MCI and CI), correcting for age, sex and
education. These analyses were primarily investigated across
all networks (i.e. globally) and only considered statistically
significant if the main effect survived correction for perform-
ing two comparisons using Bonferroni. As flexibility can be
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Figure | A simplified illustration of the assignment of brain regions to networks and quantification of reconfiguration dynamics
as used in this study. (A) The pre-processed fMRI data was cut into smaller overlapping windows and connectivity was calculated between all
regions within that window, resulting in a connectivity matrix for each window. Initially, the assignment of brain regions to networks is based on
literature-derived networks, but this is iteratively updated by identifying the region with worst assignment using the original assignment, min(Q),
and reassigning it to the network with which assignment quality would be maximized. This iterative reassighment is performed until the same

regions is selected to have worst assignment two times in a row, signalling convergence. (B) Then, we could quantify network reconfiguration over

time (from t/ to t5 in this example) using four measures. Promiscuity quantifies how many networks a region was assigned to, e.g. 2/3 for region |
and 3/3 for region 4. Flexibility quantifies how many times a region was reassigned over time, e.g. (4/4=)| for region | and 1/4 for region 6. Cohesion
quantifies how many of these flexible reconfigurations are made together with another region, e.g. region | and region 4 switch assignment together
from t4 to t5. Finally, disjointedness quantifies how many reconfigurations are made independently, all other switches in this example are

independent switches.

further differentiated using cohesion and disjointedness,
these were tested between groups post hoc if flexibility was
significant and used instead of flexibility in all further ana-
lyses. Bonferroni correction was applied over these two mea-
sures as well and if only one of these two measures showed a
significant difference, only that one was investigated further
instead of flexibility. When global effects were found,
network-specific effects were investigated by performing
the linear mixed models and correcting the main effects for
performing multiple comparisons across all seven networks
using Bonferroni. Additional validation analyses were per-
formed by comparing significant differences between CI
and CP patients using follow-up data, controlling for surro-
gate data and by further scrutinizing the results using

different sliding-window parameters. Longitudinal changes
were explored in cognitively declining and cognitively stable
multiple sclerosis patients relative to HCs using linear mixed
models, but only for those measures of reconfiguration dy-
namics that differed between CI and CP patients at baseline
(i.e. cognitively relevant). Cognitively relevant dynamic re-
configuration parameters of multiple sclerosis patients
were also correlated to average cognition, individual cogni-
tive domains, EDSS score, fatigue and measures of structural
damage (i.e. white matter FA, grey matter volume and lesion
volume), using partial correlation coefficients corrected for
age, sex and education.

Normality was checked using Kolmogorov-Smirnov test
and histogram inspection, P-values <0.05 were considered
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statistically significant. The level of education was based on
the highest level of education attained and was binarized for
analyses (higher professional education yes/no). All reported
P-values are corrected for performing multiple comparisons
unless specifically indicated (i.e. puncorr)-

Anonymized data, not published in the article, will be shared
on reasonable request from a qualified investigator.

Results

Baseline demographics and clinical characteristic of the par-
ticipants are summarized in Table 1. In the multiple sclerosis
group, 134 (58.3%) were classified as CP (99 women; mean
age 46 + 10 years), 42 (18.3%) as MCI (26 women; mean
age 49 4+ 13 years) and 54 (23.5%) as CI (31 women;
mean age 50 £ 12 years). Groups slightly differed on age,
sex and education (see Table 1); all analyses were corrected
for these three variables. Longitudinally, 65 patients were
classified as cognitively declining and 165 as cognitively
stable, and these groups did not differ on age, sex and educa-
tion (see Supplementary Table 1). In addition, the propor-
tion of treated patients or treatment type was comparable
between cognitive groups, both cross-sectionally and
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longitudinally. The proportion of cognitively declining and
stable patients was similar for each (at baseline defined) cog-
nitive group (P =0.252).

Promiscuity. A main effect for cognitive group was seen
when not correcting for multiple comparisons, driven by a
higher promiscuity in CI compared with CP patients (=
0.263, 95% CI=[0.070, 0.457], P = 0.008). However, this
main effect did not survive multiple comparison correction
[F(3,282)=2.671, P=0.096; see Table 2 and Fig. 2].

Flexibility. A main effect for cognitive group was found
[F(3,282) =3.719, P =0.024]. CI patients showed increased
global flexibility compared with CP patients [f=0.286,
95% CI=(0.113, 0.459), P=0.001], which indicates that
brain regions changed the subnetwork they participated in
more often in CI patients. No other differences were ob-
served between cognitive groups.

Cohesion and disjointedness. Based on the flexibility results,
cohesion and disjointedness were explored as well. A differ-
ence in global cohesion strength was found between cogni-
tive groups [F(3,282)=3.704, P=0.024; see Table 2], as
CI patients showed higher global cohesion than CP patients
[=0.319, 95% CI=(0.124, 0.514), P=0.001]. No other
differences were observed between cognitive groups for co-
hesion. In addition, no global effect for cognitive status

Table | Demographic, clinical and brain volumetric sample characteristics

Multiple sclerosis

HC (N=59) CP (N=134) MCI (N=42) CI (N=54) Test-statistic  P-value
Demographics
Male, n 28 (47.5%)F 35 (26.1%)H¢ 16 (38.1%) 23 (42.6%) X2=10.165 0.017
Age,y 4599 +9.92 46.06 + 10.14  49.03 + 12.69 5036 + 11.56  F=2.696 0.046
Level of education® 6 (3N 6 Q"M 4 (3)HCCP 4 (3)HC F=4.995 0.002
Disease characteristics
Symptom duration = 13.80 +7.96°'  14.48 + 7.56 17.63 + 987  F=4.067 0.018
Disease phenotype, RRMS/SPMS/PPMS = 114<Y15/5M  31/4/77<F 341377 X2=15713 0.003
Treatment, Yes, n = 49 (47,1%) 19 (45,2%) 18 (33,3%) X?=1523 0.467
First line, n = 37 (75,5%) 19 (100%) 14 (77,8%) X*=5619 0.060
IFB/COP/NA/Other - 31/6/9/3 13/5/0/0 12/2/3/1 X?=6.833 0.337
Clinical variables
EDSS ¥ = 3(1.5) 3(1.5) 4 (2.75)<° F=8.70I <0.001
Cognitive function 0.07 + 0.47° —0.18 + 0.47*  —1.01 +031° —1.77 4+ 070> F=173518 <0.001
Longitudinal cognition, Stable/declining - 102/32 28/14 35/19 X?=2757 0.252
Fatigue (CIS-20) = 7247 +26.6 70.08 + 26.8 79.8 + 22.3 F=13I5 0.272
Brain volume
NDGMV (mL) 62.71 + 3.47° 58.71 + 489  55.80 + 6.01° 5207 +7.49°  F=4037I <0.001
NCGMV (L) 0.78 + 0.05M"“" 077 + 004 0.75 + 0.05"“"  0.72 + 0.06* F=17.975 <0.001
Lesion volume (mL) = 11.83 (9.18)“ 16.77 (13.69)' 2330 (17.78)>  F=16.459 <0.001

Note. All values represent means and standard deviations for the continuous variables but signify medians and the interquartile range (¥) or frequencies for categorical variables. Sample
characteristics were compared between groups. The level of education was based on the highest level of education attained. Brain volumetric measures were transformed to litres (L)
or millilitres (mL) for readability. Fatigue was assessed in a subset of participants (CP/MCI/CI: N = 64/24/35). Post hoc pairwise comparisons were Bonferroni corrected and P-values
below 0.05 after correction were depicted in bold (* = significantly different from all other groups, " = significantly different from HC, <F = significantly different from CP, ' =
significantly different from MCI, = significantly different from CI). HC = healthy control, CP = cognitively preserved, MCl = mild cognitive impairment, Cl = cognitive impairment,
NDGMV = normalized deep grey matter volume, NCGMV = normalized cortical grey matter volume.
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Table 2 Baseline reconfiguration dynamics
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Mean (+SD) Main: group Cl versus CP
HC (N=59) CP(N=134) MCI(N=42) ClI (N=54) F P-value B (95% CI) P-value
Global effects
Promiscuity 0.00 (+0.52) —0.16 (£0.59) —0.01 (+0.60) 0.14 (+£0.71) 267 0.096 0.26 (0.07, 0.46) 0.008
Flexibility 0.00 (+0.48) —0.15(£052) —0.02 (+0.57) 0.17 (£0.65) 3.72 0.024 0.29 (0.11, 0.46) 0.001
Flexibility type
Cohesion 0.00 (+0.55) —0.18 (£0.58)  —0.05 (+0.63) 0.18 (+0.73) 3.70 0.024 0.32 (0.12,0.51) 0.001
Disjointedness ~ 0.00 (+0.29) 0.02 (+0.30) 0.13 (+£0.30) 0.08 (+0.30) 1.60 0.378 0.05 (—0.05, 0.14) 0.334
Network effects
Cohesion
DAN 0.00 (£ 1.00) —035(£1.03) —0.24(1+0.78) 0.1l (tl.16) 280 0.280 0.42 (0.09, 0.75) 0014
DMN 0.00 (+ 1.00) —0.13(£0.95) —0.13 (+0.86) 020 (t1.16) I.19 1.000 0.28 (—0.04, 0.60) 0.084
FPN 0.00 (+1.00) —0.50(£0.99) —027(+1.01) —0.10(+1.12) 3.69 0.084 0.39 (0.06, 0.720) 0.021
SMN 0.00 (£ 1.00) —0.07 (£0.89) 0.10 (£ 0.81) 0.12(+0.78)  0.60 1.000 0.15 (—0.13, 0.43) 0.283
DGM 0.00 (+ 1.00) —0.09 (£1.12) —0.04 (+1.21) 0.16 (£1.13) 0.27 1.000 0.15 (—0.21, 0.51) 0.408
VAN 0.00 (+ 1.00) —0.39(£0.97) —0.24 (+1.20) 0.07 (£1.09) 290 0.245 0.43 (0.09, 0.76) 0013
Visual 0.00 (+ 1.00) 0.26 (+1.24) 0.48 (+1.22) 072 (+£1.29) 3.05 0.203 0.42 (0.03, 0.81) 0.037

Note. Global flexibility differed between groups at baseline. When further scrutinizing the types of flexible switches, group differences were solely found for cohesion (i.e. mutual
switches) and not disjointedness (independent switches). Most notably, Cl patients showed greater global reconfiguration dynamics compared with CP patients, with HCs and MCI
patients showing intermediate dynamics. Reconfiguration dynamics did not seem to be specific to a particular network. The z-scores were based on the distribution of HCs within each
networks and global dynamics represented the average over all networks. The reported P-values for the main group effects were corrected for multiple comparisons using Bonferroni
correction and P-values below 0.05 after correction were depicted in bold. Subnetworks: DAN, DMN, FPN, SMN, deep grey matter, VAN and visual network.

was found for disjointedness [F(3,282)=0.905, P =0.876].
Thus, brain regions changed assignment more often together
with other regions (i.e. mutual switches) and not independ-
ently in CI patients. In additional exploratory analyses the
characteristics of cohesion were further investigated, show-
ing more frequent mutual switches between regions that nor-
mally do not switch together in CI compared with CP (see
Supplementary Material).

For all aforementioned analyses that showed significant
group differences, age was a significant covariate but sex
and education were not.

The dynamic reconfigurations of a full resting-state scan
have been visualized for a single representative HC (Video
1). In addition, the reconfigurations have been visualized
for the participant that showed the lowest number of mutual
switches (a CP patient) and the participant showing the high-
est number of mutual switches (a CI patient; Video 2).

Based on the global findings, subnetwork-specific effects
were only investigated for cohesion (see Table 2). No
subnetwork-specific main effects of group were found after
correcting for multiple comparisons (all p>0.084).
The DAN [F(3,282)=2.803, puncorr=0.040], FPN
[F(3,282)=3.687, puncorr=0.012], VAN [F(3,282)=
2.900, puncorr=0.035] and visual network [F(3,282)=
3.049, Puncorr=0.029] did show group differences in
cohesion without correcting for multiple comparisons,
with fixed effects indicating increased cohesion for CI
compared with CP patients in the DAN [=0.416, 95%
CI=(0.086, 0.747), P=0.014], FPN [=0.391, 95%
CI=(0.059, 0.724), P=0.021], VAN [f=0.425, 95% Cl=
(0.092, 0.759), P=0.013] and visual network [f#=0.417,

95% CI=(0.026, 0.807), P=0.037]. In addition, cohesion
was reduced in CP patients compared with HCs in the
DAN [B=-0.335, 95% CI=(-0.653, —0.018), P=0.039],
FPN [f=—-0.481, 95% CI=(-0.800, —0.162), P=0.003]
and VAN [=-0.357, 95% CI=(-0.678, —0.037),
P=0.029].

Similarly to the baseline analyses, cohesion based on the
follow-up scans was higher in CI compared with CP patients
defined on the follow-up cognitive tests [#=0.322, 95%
CI=(0.534,0.109), P =0.003).

The global effects for cohesion derived from the empirical
data were still significantly increased in CI compared to CP pa-
tients when additionally controlling for global cohesion values
derived from randomized data [=0.112, 95% CI=(0.023,
0.200), P=0.013], indicating that this measure picked up
more than just noise or static connectivity differences.

Looking at the effects of using a shorter window size [f=
0.297, 95% CI=(0.104, 0.491), P=0.003] or a Gaussian
window shape [8=0.281, 95% CI=(0.086, 0.476), P=
0.005], global cohesion remained increased in CI compared
with CP patients. Together, these analyses support the valid-
ity of global cohesion.


http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac095#supplementary-data
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Figure 2 Network reconfiguration dynamics per group at baseline. Global flexibility (P = 0.001) was higher in Cl patients compared with
preserved (CP) patients, showing that brain regions switch more frequently between resting-state networks. Cohesion (P=0.001) was
particularly increased in Cl patients compared with preserved patients and not disjointedness, indicating that the increased reconfigurations
particularly occurred for pairs of brain regions (i.e. mutual switches). MClI patients showed intermediate dynamics. This effect does not seem to be
specific to a network, but rather general across the whole brain. The coloured points indicate dynamics of each participant per network and the
distribution over all networks is represented to the left of them, within that distribution the mean and confidence interval of global values are
depicted. The horizontal dotted lines represent the confidence interval of global measures for CP patients, included for readability.
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Network Assignment Over Time
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Video | Reconfiguration dynamics in a single healthy control. The colours representing subnetwork assignment are superimposed on
the standard brain for each window (top-left). The corresponding amount of flexible, mutual and disjointed switches at each time-point are
representing using line graphs (bottom-left). Finally, the subnetwork assignment for all regions at all windows is portrayed to show how some brain
regions are vastly more promiscuous than other regions (right).

Cognitively Preserved Cognitively Impaired

o

Cohesion per timepoint in CP vs ClI

75

Cohesion
(4]
(=]

N
(=]

200
Time (sec)

Video 2 Reconfiguration dynamics of one cognitively preserved (left) and one impaired patient (right). Even with close visual
inspection the more unstable network structure of the impaired patient is identifiable, for example by focusing on the sensorimotor network in
yellow. In addition, the bottom graph illustrates how this impaired patient shows more mutual switches at almost all time-points during the
resting-state scan.



Dynamic network reconfigurations and cognition in MS

Based on cross-sectional findings, only global effects for co-
hesion were investigated. Global cohesion of multiple scler-
osis patients increased over time relative to HCs [F(1,226)
=6.549, P=0.011] but only in cognitively declining pa-
tients [8=0.204, 95% CI=(0.042, 0.365), P=0.014] and
not in cognitively stable patients [f#=0.044, 95% CI=
(—0.057, 0.146), P=0.390; see Fig. 3). No differences
were observed between the two groups [F(4,226)=2.715,
P=0.101] not at baseline [8=0.006, 95% CI=(-0.171,
0.184), P=0.944] or at follow-up [=0.153, 95% CI=
(—0.024, 0.330), P=10.090].

In multiple sclerosis patients, lower average cognition at
baseline was related to higher cohesion (r=-0.182, P=
0.007). This holds true after additionally adjusting for
EDSS (r=-0.140, P=0.036), whereas no relation was
found between EDSS and cohesion (r=0.118, P=0.078)
after correcting for average cognition, suggesting that recon-
figuration dynamics is especially important for cognition and
not physical impairment. In particular, higher cohesion was
related to worse verbal memory (r=—0.156, P =0.022), IPS
(r=-0.202, P=0.003) and working memory (r=—0.163,
P=0.017) in multiple sclerosis patients. Finally, for fatigue,
no relationship with cohesion was observed (r=0.014, P=

0.874).

Cohesion
ns
2 ST Cognitive Status
Stable
Declining

Z score
o

T T
Baseline Follow-up

Figure 3 Longitudinal change in cohesion for patients.
Cobhesion increased over time in declining patients relative to HCs
(P=0.014), but not in stable patients (P = 0.390). HC values are not
shown, as patient scores were normalized relative to the
distribution of HCs at each time-point.
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In multiple sclerosis patients, higher cohesion was related to
lower normalized deep grey matter (r=—0.183, P=0.006)
and cortical grey matter volume (r=-0.162, P=0.015)
and FA of white matter tracts (r=—0.143, P=0.032). In
addition, more lesion volume in multiple sclerosis patients
is related to higher global cohesion (r=0.176, P=0.008).

Discussion

In this study, multiple sclerosis patients with cognitive impair-
ment showed more dynamic reconfigurations of the function-
al network compared with CP patients. Subnetworks were
reconfigured more frequently, and this increase was specifical-
ly salient for pairs of brain regions being reconfigured in uni-
son (i.e. mutual switches). These findings were found across
the entire brain and did not seem to be specific for one particu-
lar subnetwork. In addition, mutual switches increased over 5
years in patients that showed cognitive decline over those
years. More extensive dynamic network reconfiguration in
multiple sclerosis patients related to more severe structural
damage to the white and grey matter and worse cognitive per-
formance on IPS, verbal memory and working memory.

CI patients showed globally higher reconfiguration dy-
namics (i.e. higher flexibility) compared with patients that
were unimpaired, as brain regions were reconfigured more
frequently across subnetworks. Peripheral brain regions are
reconfigured continuously and precisely to promote integra-
tion across subnetworks,'” but the network must also dedi-
cate a rigid core of regions to focus and to remain stable
during a cognitive task.*! Thus, there is a delicate balance be-
tween too much and too little reconfigurations and the in-
creased subnetwork reconfigurations in CI multiple
sclerosis patients could indicate that reconfigurations be-
came more erratic. This implies that the functional network
had become less stable.”” These results shed new light on pre-
vious findings that showed that the functional network in CI
multiple sclerosis patients seems ‘stuck’ in a state of high
DMN connectivity,'>1*1645 suggesting that this ‘stuckness’
co-occurs with more dynamic integration through the recon-
figuration of brain regions across subnetworks. Although
this might seem counterintuitive, the DMN consists of
many central or ‘hub’ regions that are strongly involved in in-
tegrating information across the network to more peripheral
brain regions.*®*” Peripheral regions, however, are mainly
involved in integrating information across subnetworks
through dynamic reconfiguration across subnetworks.*®
Thus, both these findings might reflect a network with
more intense integration of information, as the DMN re-
mains stuck in a highly connected state, where peripheral re-
gions might reconfigure more than normal. As non-hub
regions are more widely dispersed across the network,*®
this might explain our lack of network-specific effects, al-
though this hypothesis needs validation in future work.
Finally, in theory, more extensive reconfiguration dynamics
could require sustained effort and burden on the network,
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which might play an important role in the development of fa-
tigue in multiple sclerosis,*” but no relationship between co-
hesion and fatigue was observed in this study.

Beyond more frequent reconfigurations, switches between
subnetworks that featured pairs of brain regions (i.e. mutual
switches) were particularly heightened in CI, which further
increased in patients that showed cognitive decline. Mutual
switches have been studied before in the healthy brain and
this type of reconfiguration was regarded as a marker of co-
ordinated changes in subnetwork organization.”**° This
seemingly contrasts the notion of more erratic reconfigura-
tions across subnetworks in multiple sclerosis. However,
this mutual switching (i.e. cohesion) could also be considered
as an increased viscosity of the network. In support, we per-
formed additional analyses exploring the underlying pattern
of mutual switches, showing that these actually occurred be-
tween regions that normally do not switch together as fre-
quently, in line with the concept of an increased viscosity.
These mutual switches further increased in patients that
showed longitudinal cognitive decline. Other longitudinal
studies investigating network changes related to cognitive
decline are scarce. One recent study performed in the same
cohort has indicated that an initially disturbed functioning
of the VAN might precede both DMN disturbance and
more pronounced cognitive impairment, as longitudinal
changes in VAN centrality were exclusively observed in
stable patients and no changes were observed in declining pa-
tients.>* Another study in early multiple sclerosis also found
that the static organization of the functional network alone
did not relate to cognitive decline.’! These results suggest
that the longitudinal cognitive decline might not be well-
reflected by static functional network changes alone.
Instead, the interplay between structure and function was
found to be relevant to cognitive decline in early multiple
sclerosis.’ Although we did not formally evaluate the inter-
play between structure and function in this study, the dy-
namic network reconfiguration parameters in this study
related strongly to common markers of structural damage
in multiple sclerosis. Future work could, therefore, investi-
gate the role of structural network changes on dynamic net-
work parameters further. In addition, structural damage
might induce noise in functional quantifications which
should also be explored further.

The origins of such an increase in dynamic reconfiguration
in multiple sclerosis remains elusive but could relate to an al-
tered balance between excitation and inhibition and regula-
tory functions between networks. For instance, multiple
sclerosis features an extensive loss of inhibitory neurons,
which are thought to have more control on overall network
functioning compared with excitatory neurons.’” As such,
the imbalance between excitatory and inhibitory control in
multiple sclerosis’® might have led to disinhibition of the
DMN. Accordingly, in healthy individuals the DMN and vis-
ual network show a negative correlation, but this was lost in
CI multiple sclerosis patients.'* Subsequently, DMN disin-
hibition might result in more erratic network reconfigura-
tions, possibly related to impaired VAN functioning, a
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network known to be crucial for managing network balance
in the brain.>* On top of these functional effects, continuing
damage to structural pathways could result in an increasing
constraint of functional connectivity,’'*** which could drive
regions to switch together even though they normally would
not. However, future work is needed to better comprehend
the entire structural and functional cascade of events leading
to such a disruption in whole-brain network dynamics.

Reconfiguration dynamics of the whole brain were more
strongly related to cognitive than physical impairment in
multiple sclerosis. CI patients showed more physical impair-
ment than CP patients, but the amount of physical impair-
ment did not relate to global reconfiguration dynamics
after correcting for the amount of cognitive impairment.
Although there is some association between physical and
cognitive impairment, this is not always the case in multiple
sclerosis.®® Previous (static) functional network studies have
reported distinct patterns of functional connectivity changes
related to either motor or cognitive symptoms,’® and the
SMN seems to play a particularly important role for physical
impairment only.”’ More research is needed to understand
whether functional network dynamics affects motor per-
formance as well, since previous studies have been limited
in size.’” In addition, previous work has shown some prom-
ise with more advanced measures of disability compared to
EDSS, especially with more complex tasks of hand function-
ing, which seem to have more cognitive circuitry involved
compared with walking tests.”® Looking at individual cogni-
tive domains, relations with IPS, working memory and ver-
bal memory were most pronounced, all of whom have
been related to dynamic connectivity changes in multiple
sclerosis before.?”**! These domains are also known to
be commonly impacted in multiple sclerosis,®* and to be re-
lated to a wide variety of brain regions,?”>** which could ex-
plain these results.

Some limitations should be addressed. First, we only stud-
ied established multiple sclerosis and future studies could in-
vestigate the first phase of the disease to capture the earliest
effects and potential compensatory processes as a result of
structural damage. Furthermore, although cognitive decline
was identified over 5 years from baseline to follow-up, the de-
cline in the current sample was relatively mild so even longer-
term assessment is needed. The slow accumulation of cogni-
tive impairment is best measured over long time windows,
thus larger effect sizes are commonly seen cross-sectionally.
This could also be the reason for the observed sex differences
between cognitive groups only at baseline. Alternatively, sex
effects in longitudinal decline might mainly play a role early
in the disease, which was not covered by our cohort. In add-
ition, even though functional connectivity was found to be
relatively stable across scanners,®* there was a major update
between time-points, which is why time-point-specific
z-scores were used based on HCs. In dynamic network stud-
ies, it is important to look for effects of spurious dynamics,
which is why sensitivity analyses were added to show that
the current methods capture network reconfiguration that
cannot solely be explained by the static organization of the
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network. Finally, future studies are needed to study task-
based paradigms to further reveal whether additional infor-
mation on dynamic reconfigurations can be captured during
active cognitive processing in multiple sclerosis.*®

Conclusion

Multiple sclerosis patients with cognitive impairment exhib-
ited a more unstable network, i.e. brain regions switched be-
tween subnetworks more often. This reduced network
stability worsened longitudinally in cognitively declining pa-
tients only. These results suggest that the functional network
reconfigurations become more erratic over time as patients
transition towards more severe cognitive impairment in mul-
tiple sclerosis, thus supporting the hypothesis that the mul-
tiple sclerosis network progressively destabilizes. Future
studies are now required to further elucidate the specific
pathological mechanisms leading to such a network destabil-
ization over time.
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