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Abstract

Background: Cognitive dysfunction in multiple sclerosis (MS) is frequent. Insight into underlying mechanisms would help to
develop therapeutic strategies.

Objective: To explore the relationship of cognitive performance to patterns of nodal centrality derived from magneto-
encephalography (MEG).

Methods: 34 early relapsing-remitting MS patients (median EDSS 2.0) and 28 age- and gender-matched healthy controls
(HC) had a MEG, a neuropsychological assessment and structural MRI. Resting-state functional connectivity was determined
by the synchronization likelihood. Eigenvector Centrality (EC) was used to quantify for each sensor its connectivity and
importance within the network. A cognition-score was calculated, and normalized grey and white matter volumes were
determined. EC was compared per sensor and frequency band between groups using permutation testing, and related to
cognition.

Results: Patients had lower grey and white matter volumes than HC, male patients lower cognitive performance than
female patients. In HC, EC distribution showed highest nodal centrality over bi-parietal sensors (‘‘hubs’’). In patients, nodal
centrality was even higher bi-parietally (theta-band) but markedly lower left temporally (upper alpha- and beta-band).
Lower cognitive performance correlated to decreased nodal centrality over left temporal (lower alpha-band) and right
temporal (beta-band) sensors, and to increased nodal centrality over right parieto-temporal sensors (beta-band). Network
changes were most pronounced in male patients.

Conclusions: Partial functional disconnection of the temporal regions was associated with cognitive dysfunction in MS;
increased centrality in parietal hubs may reflect a shift from temporal to possibly less efficient parietal processing. To better
understand patterns and dynamics of these network changes, longitudinal studies are warranted, also addressing the
influence of gender.
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Introduction

Cognitive dysfunction affects between 30 and 70% of patients

with Multiple Sclerosis (MS) [1] and is a negative predictor of

psycho-social functioning [2]. The most commonly identified

impaired cognitive domains are attention, speed of information

processing and memory [3].

Gaining deeper insight into the mechanisms of cognitive decline

would help to develop therapeutic strategies. So far, it has been

hypothesized from task-related functional Magnetic Resonance

Imaging (fMRI) that increased activation of normally activated

and activation of additional regions in MS patients reflect adaptive

changes to structural disconnection [4–7]. In contrast, higher

functional connectivity in the default mode as well as attention and

cognitive control network correlated to poorer cognitive perfor-
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mance in early MS in a recent resting-state fMRI study [8], which

seems to contradict a straightforward compensation hypothesis.

Electro- and magneto-encephalography (EEG and MEG) are

tools to measure brain function directly with high temporal

resolution. Synchronization of brain oscillations between different

regions most likely reflects functional interaction as has been

inferred from task specific synchronization changes [9–11].

Similarly, functional interaction is very likely to take place in the

resting-state. As cognition results from dynamic interaction

between distributed brain areas [12], a network perspective is

suitable for gaining insight into brain functioning [13–14] and

changes due to disease [15].

The synchronization likelihood (SL) is a measure to quantify

functional connectivity in electrophysiological time series and

accounts for linear and non-linear inter-relations [16]. SL has

shown altered resting-state functional connectivity in Alzheimer’s

disease (AD) [17], Parkinson’s disease [18], glioma patients with

epilepsy [19] and MS [20].

In a network approach, each MEG sensor can be viewed as

a node and each SL value between two sensors as the strength or

‘‘weight’’ of the link between two nodes [13,21]. Topographic

patterns of networks can be characterized with a range of

measures [21] among which centrality measures quantify the

importance of single nodes within the network [22–24]. Eigen-

vector Centrality (EC) weighs the connections of a node [25–26]:

being connected to a highly connected ‘‘hub’’ makes a node more

influential than being connected to many poorly connected

peripheral nodes. In this way, EC takes the relation within the

whole network into account and allows for the identification of

hubs: these may play a crucial role in the development of cognitive

symptoms as suggested from studies in AD [27–28].

Connectivity studies based on EEG or MEG in MS are scarce.

In progressive patients, Leocani et al. [29] found decreased inter-

hemispheric (theta-band) and intra-hemispheric (alpha-band)

coherence using EEG, more pronounced in the cognitively

impaired subgroup. Cover et al. [30] observed decreased inter-

hemispheric connectivity (alpha-band), most pronounced in

temporal regions using MEG. Schoonheim et al. [20] reported

in a previous SL-based analysis of the same dataset as used in the

present study higher inter- and intra-hemispheric connectivity

originating mostly in parietal and occipital areas (theta-, lower

alpha- and beta-band) and decreased inter-hemispheric connec-

tivity between temporal regions (upper alpha-band) as well as

a strong gender effect to the disadvantage of male patients.

In the present study, we extended our previous analysis to

explore patterns of nodal centrality and their relation to cognitive

performance by using EC. We expected this approach to be more

sensitive to disease related changes, as EC quantifies not only local

connectivity but also the importance of a node within the whole

network, and moreover is a normalized measure. In contrast, SL

and other measures of functional connectivity give only absolute

numbers or weights of connections. We will discuss the implica-

tions of our results with regard to possible mechanisms of cognitive

dysfunction.

Methods

Participants
Thirty-four MS patients (17 women, mean age 41.4+/28 years,

mean disease duration (8.1+/21.6 years based on first symptom)

from an early inception cohort (five to seven years after diagnosis)

were studied. All patients had clinically definite MS [31], and

a relapsing-remitting disease course (RRMS). Twenty eight

healthy subjects (14 women), matched for age, gender and

duration of education served as a control group. None of the

healthy controls suffered from any neurological or psychiatric

disease, nor used any medication. The study protocol was

approved by the Medical Ethical Committee of the VU University

Medical Center. All subjects gave written informed consent before

participation. A previous analysis has been performed on the same

dataset [20], and on the subsample of healthy controls [32].

Neuropsychological Evaluation
Details of the standardized neuropsychological examination are

described in Schoonheim et al. [20]. In short, all participants were

tested with the brief repeatable battery of neuropsychological tests

(BRB-N) [33], comprising the selective reminding test (SRT), the

10/36 spatial recall test (SPART), the symbol digit modalities test

(SDMT), the paced auditory serial addition test (PASAT) and the

word list generation test (WLG). In addition, the Stroop color-

word test, the concept shifting test (CST) and the memory

comparison test (MCT) were administered [34]. Individual

subjects’ test scores were converted to z-scores, using the means

and standard deviations of the entire group of healthy subjects,

and summarized into the following cognitive domains: information

processing speed (SDMT), psychomotor functioning (CST,

SDMT), attention (Stroop), verbal memory (SRT), working

memory (MCT), executive functioning (CST, WLG) and visuo-

spatial memory (SPART). Post hoc, the PASAT was excluded

from analysis, as all patients had repeatedly performed the test in

the past and showed significant learning effects compared to

controls.

To capture the heterogeneity of cognitive dysfunction in MS in

one number, a cognition-score was calculated by averaging the z-

scores over the seven cognitive domains, mainly reflecting the

overall cognitive capacity, rather than specific functions. Spear-

man’s rho between the cognition-score and information processing

speed, psychomotor functioning, attention, verbal memory,

working memory, executive functioning and visuo-spatial memory

was 0.93, 0.93, 0.54, 0.68, 0.39, 0.79 and 0.65, respectively.

Magnetoencephalography
Details of the MEG recording and selection of epochs for

further analysis have been described in [32]. Shortly, a 151-

channel whole-head MEG system (CTF Systems Inc., Port

Coquitlam, BC, Canada) inside a magnetically shielded room

(Vacuumschmelze GmbH, Hanau, Germany) was used to record

magnetic fields during a 5 minute eyes-closed resting period at

a sampling frequency of 625 Hz. A third order software gradient

was used after online band-pass filtering between 0.25 and

125 Hz. For each subject, five artefact-free epochs of 4096

samples (6.554 s) were selected. Epochs were band-pass filtered

into the commonly used frequency bands: delta (0.5–4 Hz), theta

(4–8 Hz), lower alpha (8–10 Hz), upper alpha (10–13 Hz), beta

(13–30 Hz) and gamma (30–48 Hz). All further analyses were

performed separately for these bands. Fourteen channels had to be

excluded due to artefacts in one or more participants, leaving 137

channels for further analyses.

Synchronization Likelihood
Synchronization likelihood (SL, see [16]) was used as an index

of functional connectivity and was calculated with BrainWave

(version 0.8.99; available from: http://home.kpn.nl/stam7883/

brainwave.html). Shortly, SL measures the statistical interdepen-

dency of two time series by determining the probability that

recurrent patterns (whatever their shape) in each time series occur

at the same time, thus taking linear and non-linear relations into

account. SL is based on the concept of generalized synchroniza-
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tion [35], and is more sensitive than linear measures like coherence

or cross-correlation (for review see [36]). In the present study SL

between all combinations of the 137 included channels was

determined per frequency band (for specific parameter settings see

[37]). In the resulting 1376137 connectivity matrices, each SL

value represents the strength of a connection. In this way, the

connectivity matrices are identical to weight matrices, which were

subsequently used for the EC analysis. Weighted analysis avoids

arbitrarily setting a threshold for binarization and results in fully

connected graphs. Furthermore, it has been shown to more

comprehensively characterize the network [38–39].

Eigenvector Centrality
Centrality measures originate in the social sciences and

determine which member of a network is the most influential

[25,40]. They have recently been introduced into neuroscience

[22–24] and allow the determination of connectivity from the

perspective of a single node, quantifying the importance of a node

within a network. Degree centrality simply equals the number of

connections of a node, its degree, or, in weighted networks the

strengths of a node (the sum of the weights of all the edges of

a node) [40]. In contrast, EC determines the relative importance of

a node within the entire network by also considering the quality of

the connections [25–26]. Furthermore, it is a vector-normalized

measure facilitating comparisons between equal sized networks.

EC will also be referred to as nodal centrality.

EC is based on the spectral decomposition of a binarized

adjacency or a weight matrix. For symmetric matrices with strictly

positive entries, the decomposition yields a unique largest real

Eigenvector with strictly positive entries (Perron-Frobenius-theo-

rem). This holds also for irreducible square matrices with non-

negative entries, which is the case for the weight matrix derived

from SL used in the present study. We calculated the EC

according to Lohmann et al. [22] using BrainWave (version

0.8.99): The EC of a node i is defined as the i-th entry in the

normalized Eigenvector belonging to the largest Eigenvalue.

Nodes with outstanding centrality can be viewed as the ‘‘hubs’’

of a network [21,41]: sensors belonging in at least 80% of healthy

subjects to the 20% highest EC-values of each individual subject

were defined as hubs on a group level [42].

Magnetic Resonance Imaging
Details of the MRI procedures and analyses are described in

Schoonheim et al. [20]. In short, all subjects underwent an MRI

scan using a 3T-MR-system (GE Signa HDXT, V15M), except

two patients who refused scanning due to claustrophobia. A 3D-

T1 FSPGR-, a 2D dual echo PD/T2- and a 2D spin echo T1-

sequence were acquired. T1-hypointense and T2-hyperintense

lesion volumes were quantified using Alice (Perceptive Informatics

Inc.) and total grey and total white matter volumes corrected for

head size were measured using SIENAX, version 2.5 [43].

Statistical Analysis
As previous analyses showed gender differences in delta-band

functional connectivity for healthy controls [32], and most

pronounced group differences in male MS patients [20], group

(MS vs. HC) and subgroup-comparisons (MS men vs. HC men,

and MS women vs. HC women) were performed for the EC data.

Clinical and MRI variables were compared between groups by

a MANOVA, and within patients between gender (male vs. female

MS patients) by a one-factor ANOVA.

For each frequency band, significance of EC differences

between groups and subgroups was estimated by permutation

testing, using maximum statistics in order to correct for multiple

comparisons over sensors [44]. In permutation testing the null

distribution for between-group differences is derived from the

data: assuming no group differences, group assignment is

permutated. In our setting a t-statistic was calculated after each

permutation. To correct for multiple comparisons, the maximum

t-value across sensors for each permutation was used to construct

a distribution of maximum t-values for 5000 permutations. The

threshold for alpha = 0.05 for this distribution of maximum values

was calculated and subsequently applied to determine whether

observed t-values at the individual sensors reached significance. As

only differences between MS men and HC men survived this strict

correction, uncorrected p-values are reported at a level of p,0.01.

To explore the relation between the EC and cognitive

performance the normally distributed centrality values at each

sensor were correlated to the cognition-score within the MS-group

and within healthy controls by Pearson’s product moment

correlation. To adjust for multiple comparisons, the false discovery

rate was used [45–46].

The sensor-level results were visualized by plotting 1) z-maps to

depict the distribution of EC-values in healthy controls after

averaging per sensor and z-transformation, 2) t-maps to show the

topographic patterns of group- and subgroup differences, and 3) r-

maps to picture the topography of correlations between EC-values

and the cognition-score separately for MS-patients and healthy

controls.

Results

Clinical, Neuropsychological and MRI Measures
Table 1 summarizes clinical and MRI characteristics for healthy

controls and MS patients, as well as male and female patients. A

MANOVA with group and gender as fixed factors showed

significantly lower grey and white matter volumes in MS patients

(p,0.05 and p,0.01, respectively), a significant gender difference

with lower grey matter volumes (p,0.01) in men, and a significant

group by gender interaction for cognitive performance (p,0.05),

where male patients had the lowest scores. Six male and two

female MS patients performed below two standard deviations of

healthy controls in at least one cognitive domain, signifying mild

cognitive impairment. Within patients a one-factor ANOVA

between gender showed significantly lower cognition-scores

(p,0.05) and lower grey matter volume (p,0.01) in male patients.

Topography of Eigenvector Centrality in Healthy Controls
Figures 1 and 2 give a synopsis of the different analyses in the

beta-band, which showed the most prominent changes; Figures

S1, S2, S3, S4, S5 show the analyses over each of the six frequency

bands.

Figure 1a and S1 depict the spatial distribution of EC-values in

healthy controls as z-maps. As there were no significant (p,0.01)

gender differences, healthy subjects are described as one group. In

the delta-band (Figure S1a), EC-values were highest over the right

fronto-temporal region, and medium high values were found over

the left fronto-temporal region. In contrast, from the theta- to the

gamma-band the pattern of distribution showed highest EC-values

over both parietal areas with a clear preponderance of the left side,

and medium high EC-values over both temporal regions also with

a left dominance (Figure S1b–f). This pattern was most apparent

in the gamma-band. Furthermore, inter-individual variability was

lower in the higher frequency bands (upper alpha- to gamma-

band), indicated by the higher number of sensors in which highest

individual EC-values were at the same sensors in over 80% of

subjects. These hubs were located over the left temporo-parietal
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junction in the upper alpha- and gamma-band, and bi-parietally in

the beta-band (Figure 2a and S1d–f).

Group and Subgroup Differences in Topography of
Eigenvector Centrality

Table 2 gives the number of significantly different sensors per

region for group and sub-group comparisons, and Figures 1b, 2b

and S2 show the distribution of group differences in EC-values as

t-maps and corresponding p-values. In the delta- to beta-band

the pattern of group differences was similar: MS patients had bi-

parietally higher EC-values (theta-band, p,0.01, Figure S2b),

and lower EC-values mainly over left temporal regions (upper

alpha and beta-band, p,0.01, Figure S2d–e). The gamma-band

showed a different pattern: here MS-patients had lower EC-

values over right parietal regions (p,0.01, Figure S2f).

Figures 1c, 2c and S3 show the distribution of subgroup

differences (male MS patients vs. healthy men). The patterns were

quite similar to the patterns of the group comparisons, but were

more pronounced and additionally more widespread in the beta-

band,: EC-values were significantly higher in bi-parietal sensors

Table 1. Baseline characteristics of healthy controls and MS patients.

healthy controls MS MS women MS men

n 28 34 17 17

age (y) 39.8 (10.5) 41.4 (8.0) 41.4 (5.7) 41.3 (10.0)

EDSS NA 2.0 (0–4.5) 2.0 (0–4.5) 2.0 (0–4.0)

disease duration (y) NA 8.1 (1.6) 8.32 (2.0) 7.86 (0.93)

‘‘cognition’’ (z-value) 0.070 (0.61) 20.278 (0.844) 0.091 (0.58) 20.647 (0.92)+

NGMV (ml) 845.9 (49.8) 815.4 (42.3)* 833.3 (38.4) 795.1 (38.1)++

NWMV (ml) 691.7 (35.8) 662.9 (29.8)** 660.9 (25.2) 665.1 (35.0)

T2 (ml) NA 1.50 (0.21–13.96) 1.18 (0.33–5.53) 2.26 (0.21–13.96)

T1 (ml) NA 0.76 (0.04–9.23) 0.57 (0.13–3.87) 0.86 (0.04–9.23)

Means (6SD) are given, for EDSS, T2 and T1 medians (range); EDSS: expanded disability status scale; ‘‘cognition’’: average of z-scores over seven cognitive domains;
NGMV: normalized grey matter volume; NWMV: normalized white matter volume; T2: T2-hyperintense lesion volume; T1: T1-hypointense lesion volume.
* = p,0.05 and ** = p,0.01 for comparison between healthy controls and MS patients.
+=p,0.05 and ++=p,0.01 for comparison between MS women and MS men.
doi:10.1371/journal.pone.0042087.t001

Figure 1. EC-distribution, group- and subgroup-comparisons and correlations of EC to ‘‘cognition’’ in the beta-band (13–30 Hz).
Regions are plotted in the right upper corner; a) spatial distribution of z-transformed group averaged EC-values per sensor in healthy controls plotted
as a z-map; b) group (MS vs. HC) and c) subgroup differences (MS men vs. HC men) plotted as t-maps; warm colors indicate higher values in MS; d)
correlations between ‘‘cognition’’ and EC-value per sensor in healthy controls plotted as a r-map, warm colors indicate positive correlation; e) same as
d) in MS-patients.
doi:10.1371/journal.pone.0042087.g001
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(p,0.01, delta- to beta-band; p,0.05 corrected in delta-, theta-

and beta-band; Figures 2c and S3a–e) and significantly lower in

temporal sensors (p,0.01, delta-, lower alpha to beta-band;

p,0.05 corrected, lower alpha-band, Figures 2c and S3a, c–e).

Additionally, bi-frontal sensors showed significantly lower EC-

values in males with MS (p,0.01 and p,0.05 corrected; beta-

band; Figures 1c and S3e). In the gamma-band, there were no

significant differences between the male subgroups (Figure S3f).

Female patients did not show significant differences at p,0.01 to

healthy women.

Relating group- and subgroup-differences to the z-maps of

healthy controls, two patterns emerged for the delta- to beta-band:

MS-patients had higher centrality values over the bi-parietal hub

areas and lower centrality values over both temporal regions,

which had medium high centrality values in healthy controls. In

the gamma-band the pattern was different: MS-patients had lower

centrality values over bi-parietal sensors.

Associations between Eigenvector Centrality and
Cognition

Figures 1d, 2d and S4 show the distribution of associations

between EC-values to the cognition-score as r-maps and

corresponding p-values in healthy controls, Figures 1e, 2e and

S5 in patients. Table 3 gives the number of significantly correlated

sensors per region and frequency band for the patient group. In

healthy subjects (Figures 1d, 2d and S4a–f), the main cluster of

positive correlations shifted from bi-frontal sensors (delta-band)

mainly over left fronto-temporal sensors (theta- to upper alpha-

band) to bi-centro-parietal sensors (beta- and gamma-band);

however, at only four sensors in three different frequency bands

(theta-, lower alpha- and gamma-band) did correlations reach

statistical significance (0.51,r,0.59 and 20.52,r,20.51,

p,0.05 corrected). In patients (Figures 1e, 2e and S5a–f), the

main difference to the patterns observed in healthy controls was

found in temporal sensors: there were strong correlations between

EC and cognitive performance (0.44,r,0.6; theta- to beta-band;

p,0.01), highest over left temporal (lower alpha-band) and right

temporal sensors (beta-band) (p,0.05, corrected; Figure S5c and

e). Three right parieto-temporal sensors (beta-band) had a signif-

icant negative correlation to cognition (20.5,r,20.45, p,0.01

and p,0.05 corrected).

Relating these findings to the topography of nodal centrality

distribution in healthy controls and the topography of differences

between the groups, point to the temporal regions as being the

most affected and associated with cognitive functioning: temporal

nodal centrality values, which were in the medium range in

healthy controls, were lower in MS-patients but highly positively

correlated to cognitive performance.

Discussion

To gain deeper insight into possible mechanisms underlying

cognitive dysfunction in MS, we characterized the relationship of

cognitive performance to patterns of altered resting-state central-

ity. We used the synchronization likelihood (SL) to determine

functional connectivity between MEG-sensors, and the resulting

weight matrix to compute the Eigenvector Centrality (EC) per

sensor. EC quantifies how central a node is by accounting for its

connectivity and importance within the entire network. In MS

patients, nodal centrality was decreased over left temporal (upper

alpha- and beta-band) and increased over bi-parietal regions

(theta-band); cognitive dysfunction was correlated to lower nodal

centrality over temporal regions (lower alpha- and beta-band) and

Figure 2. Hubs and p-maps corresponding to Fig. 1: a) spatial
distribution of sensors, which belong in .=50% and .=80%
of healthy subjects to the 20% highest ranks (group-‘‘hub-
ness’’) corresponding to Figure 1a); b)–e) p-values for corre-
sponding t- and r-maps of Figure 1b–e.
doi:10.1371/journal.pone.0042087.g002

Table 2. Group and subgroup comparisons: number of significantly different sensors per region, side and frequency band.

frontal temporal central Parietal occipital

band left right left right left right left right left right

delta – – – 1/2 – 2/1 2/2 1/3(2) – 2/2

theta – – – – – 1/2 1/1(1) 2/2 1/1 –

lower alpha 2/1 – 1/4(1) 2/4 – – 2/2 2/3 2/1 –

upper alpha – 2/1 7/3 3/8 1/2 – 2/2 – – –

beta 1/9(1) 2/9(2) 6/7 1/8 – – 2/2(1) 2/3(2) 1/1 1/2(1)

gamma – – – – – – – 3/2 – –

Number of sensors with significant differences (p,0.01; in brackets: p,0.05 corrected) between groups (bold) and subgroups (male MS patients vs. healthy men,
standard font). Frequency bands: delta: 0.5–4.0 Hz, theta: 4.0–8.0 Hz, lower alpha: 8.0–10.0 Hz, upper alpha: 10.0–13.0 Hz, beta: 13.0–30.0 Hz, gamma: 30.0–48.0 Hz.
doi:10.1371/journal.pone.0042087.t002
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higher nodal centrality over the right parietal region (beta-band).

Differences were most pronounced in the male subgroup.

Earlier MEG- and EEG-studies have reported decreased inter-

hemispheric, mostly inter-temporal, connectivity in the alpha-

band [30], as well as decreased inter-hemispheric (theta- and

alpha-band) and intra-hemispheric (alpha-band) connectivity,

which was most pronounced in cognitively impaired patients

[29]. Based on SL, which quantifies connectivity between two

given regions, we found in our previous analysis decreased

connectivity only in the upper alpha-band, and increased

connectivity, mostly involving parieto-occipital regions bilaterally

in several frequency bands (theta-, lower alpha-, beta-band) [20].

In the present study decreased nodal centrality over both temporal

regions (upper alpha- and beta-band) was the main finding and

more pronounced than shown with regional SL analysis. As EC

accounts for connectivity and importance within the whole

network and is a vector-normalized measure, it seems to be more

sensitive to change than SL. However, the patterns found with SL

and EC were consistent: the topographies of EC-changes over the

different frequency bands showed also increased nodal centrality

over posterior regions.

Decreased nodal connectivity over temporal regions was

associated with lower cognitive performance, and whole brain

grey matter atrophy was more pronounced in the cognitively more

affected male patients. These observations suggest that partial

functional disconnection of temporal regions is probably an

important factor for cognitive dysfunction in early MS and

possibly associated with structural changes and gender. Although

from our current analysis we cannot make inferences on the

relationship between localization of structural changes and

damaged network regions, it is intriguing that an association

between decreased resting-state connectivity of the hippocampi

and hippocampal atrophy has recently been shown [47], and that

fronto-temporal regions seem to be a predilection site of grey

matter atrophy which is related to cognitive function [48–51].

However, changes in functional connectivity may be remote to

structural lesions when nodes that connect brain regions are

affected [15].

In healthy controls, the spatial distribution of nodal centrality

was quite similar from the theta- to gamma-band, an observation

which has been described previously [52]. Highest nodal centrality

was found over parietal regions, most consistently in the upper

alpha to gamma-frequency range identifying these areas as hubs.

Intriguingly, parietal multi-sensory association areas have been

shown with MRI to be the main structural hubs [53], and they

form an important part of the default mode network (DMN) [54].

The relationship between brain oscillations and resting state

networks (RSN) is complex [55–56]. RSN involved in higher

cognitive functioning as the DMN, fronto-parietal control, frontal

attention and working memory network have been found to be

preferentially associated with fluctuations in the alpha- and beta-

range over posterior regions [57–58], the DMN especially with

parietal beta [58]. Thus we speculate that parietal hubs partly

reflect similar substrates as the RSN and possibly the DMN.

Interestingly, alterations of RSN, particularly the DMN have

been described recently in different phases of MS and showed

differences between cognitively preserved and impaired patients

[59–61]. Moreover, the negative relationship between cognitive

abilities and increased functional connectivity in the DMN as well

as the attention and cognitive control network has been

hypothesized to speak for maladaption rather than compensation

[8]. Our finding of increased nodal centrality over the (right)

parietal regions associated with lower cognitive performance may

be interpreted as pointing in the same direction making

maladaption more likely than compensation. From a network

perspective we speculate that decreased centrality in damaged

regions leads to a shift of information flow to intact parts of the

network strengthening their centrality, but not necessarily

implying higher effectiveness. Whether the lateralization to the

right parietal region has in itself relevance remains unclear but

could possibly be related to some bias to right hemispheric

functions in the cognition score. However, the hypothesis of

a network shift has to be studied in more detail also considering

the possibility that connectivity and subsequent centrality changes

may be transient and dependent on disease stage and extent of

cognitive impairment. Interestingly, increased functional connec-

tivity as measured with SL was also reported in glioma patients

suffering from epilepsy [19], and in Parkinson’s disease in early

(lower alpha-band) and moderate advanced disease (theta, lower

alpha and beta-band) [18].

The observation of a clear gender difference in our early

inception cohort with quite homogenous disease duration needs to

be confirmed in independent studies and bigger samples.

However, sex-specific differences in the immune and nervous

system have been reported previously as important factors in MS

[62]. Furthermore, it has been shown that women have a greater

overall cortical connectivity and a more efficient global and local

network organisation as studied with MRI-tractography [63], as

well as higher local functional connectivity as studied with fMRI

[64], possibly rendering female brains more resilient to cognitive

dysfunction.

Table 3. Relationship between nodal centrality and ‘‘cognition’’: number of significantly correlated sensors per region, side and
frequency band in MS patients.

frontal temporal Central Parietal occipital

band left right left right left right left Right left right

delta – – – – – – – – – –

theta – – 2 1 – – – – 1 –

lower alpha 1 – 9(7) 4(1) – – – – 1(1) 1

upper alpha – – – 2 – – – – – –

beta – 1(1) – 15(11) – – – 1(1) – –

gamma – – – – – – – – – –

Number of sensors with significant correlations (p,0.01; in brackets: p,0.05 corrected); for definition of frequency bands refer to Table 2.
doi:10.1371/journal.pone.0042087.t003
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Eigenvector centrality was used to quantify connectivity and

importance within the whole network at the level of individual

nodes allowing exploration of sensor-level based patterns without

a priori assumptions on spatial distribution. Spatial imprecision due

to varying head position between subjects during MEG recordings

(usually within a range of a few centimetres) and consecutive

smearing of the signal at the group level is counter-balanced by the

fact that neighbouring sensors are highly inter-correlated anyway

due to field spread [65] and volume conduction. These factors

may influence the SL-based estimates of functional connectivity to

some extent. However, as there is no obvious reason to assume

that field spread and volume conduction differ between MS

patients and healthy controls, our reported group differences are

most likely due to underlying pathological changes in MS.

Importantly, in our previous analysis of the same data the main

findings were unaffected when a connectivity measure was used

that is insensitive to the effects of volume conduction (imaginary

phase coherence [66]).

The strength of a node, which is in binary networks its degree

centrality, can be determined by averaging the connectivity values

over all its connections that a given node has with any other node

in the network. Compared to degree centrality, EC has two main

advantages: it ‘‘weighs’’ the connectivity by also taking the

connectivity of the neighbouring nodes into account, thus

determining the importance of a node within the entire network,

and it is a vector-normalized relative measure, facilitating

comparisons between equal sized networks. EC has been shown

to be an effective measure for model free analysis of large datasets

[22] and suited to detect hubs at a global level [23–24]; however, it

is less sensitive to detect hubs in modules after partitioning the

network [23]. In our case of small networks, we consider EC an

appropriate choice as the main goal was to define the major hub

and to provide between-network comparability.

Statistical power had to be adjusted to a mainly explorative level

(p,0.01 uncorrected), probably due to the relatively small sample

size and the heterogeneity in expression of cognitive symptoms in

our sample, which ranged from normal to subtle dysfunction to

mild impairment in eight patients. However, sensors significant at

the chosen threshold were mainly found in clusters of at least three

adjacent sensors, making chance findings unlikely.

Conclusion
The present study showed that nodal centrality in resting-state

MEG is altered in the early phase of MS, and more pronounced in

male patients, who also had more cognitive dysfunction. The

topography of group- and subgroup differences showed a di-

chotomous pattern with partial disconnection of temporal regions

and increased centrality in parietal hubs. Cognitive dysfunction

was related to partial temporal disconnection and, to a much lesser

extent to increased parietal centrality; the latter finding may

indicate dysfunctional network rearrangements rather than

adaptive compensation. Longitudinal studies are needed to further

elucidate the relationship between structural, functional and

cognitive changes, as well as gender effects in MS. MEG derived

analysis of resting-state functional connectivity using Eigenvector

Centrality is a useful tool for this purpose.

Supporting Information

Figure S1 Spatial distribution of z-transformed group averaged

EC-values per sensor in healthy controls over the six frequency

bands plotted as z-maps: a) delta- (0.5–4.0 Hz), b) theta- (4.0–

8.0 Hz), c) lower alpha- (8.0–10.0 Hz), d) upper alpha- (10.0–

13.0), e) beta- (13.0–30.0 Hz) and f) gamma-band (30.0–48.0 Hz);

g)–l): corresponding distribution of sensors, which belong in

.= 50% and .= 80% of healthy subjects to the 20% highest EC-

values of each individual subject (group-‘‘hubness’’).

(TIF)

Figure S2 Spatial distribution of group-differences plotted as a t-

map over the six frequency bands a)–f) and corresponding p-values

g)–l); warm colors indicate higher values in MS.

(TIF)

Figure S3 Spatial distribution of differences in the subgroup of

men plotted as a t-map over the six frequency bands a)–f) and

corresponding p-values g)–l); warm colors indicate higher values in

MS.

(TIF)

Figure S4 Spatial distribution of correlations between ‘‘cogni-

tion’’ and EC-value per sensor in healthy controls plotted as r-

maps over the six frequency bands a)–f) and corresponding p-

values g)–l): warm colors indicate positive correlation.

(TIF)

Figure S5 Spatial distribution of correlations between ‘‘cogni-

tion’’ and EC-value per sensor in MS-patients plotted as r-maps

over the six frequency bands a)–f) and corresponding p-values g)–

l): warm colors indicate positive correlation.

(TIF)
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