631 research outputs found

    A quotient of the Lubin-Tate tower II

    Get PDF
    In this article we construct the quotient M_1/P(K) of the infinite-level Lubin-Tate space M_1 by the parabolic subgroup P(K) of GL(n,K) of block form (n-1,1) as a perfectoid space, generalizing results of one of the authors (JL) to arbitrary n and K/Q_p finite. For this we prove some perfectoidness results for certain Harris-Taylor Shimura varieties at infinite level. As an application of the quotient construction we show a vanishing theorem for Scholze's candidate for the mod p Jacquet-Langlands and the mod p local Langlands correspondence. An appendix by David Hansen gives a local proof of perfectoidness of M_1/P(K) when n = 2, and shows that M_1/Q(K) is not perfectoid for maximal parabolics Q not conjugate to P.Comment: with an appendix by David Hanse

    Characterising a Si(Li) detector element for the SIXA X-ray spectrometer

    Get PDF
    The detection efficiency and response function of a Si(Li) detector element for the SIXA spectrometer have been determined in the 500 eV to 5 keV energy range using synchrotron radiation emitted at a bending magnet of the electron storage ring BESSY, which is a primary radiation standard. The agreement between the measured spectrum and the model calculation is better than 2%. PACS: 95.55.Ka; 07.85.Nc; 29.40.Wk; 85.30.De Keywords: Si(Li) detectors, X-ray spectrometers, detector calibration, X-ray response, spectral lineshapeComment: 11 pages, 11 PostScript figures, uses elsart.sty, submitted to Nucl. Instrum. Meth.

    Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Many xenobiotics have been identified as in vitro androgen receptor (AR) antagonists, but information about their ability to produce combined effects at low concentrations ismissing. Such data can reveal whether joint effects at the receptor are induced at low levels andmay support the prioritisation of in vivo evaluations and provide orientations for the grouping of anti-androgens in cumulative risk assessment. Combinations of 30 AR antagonists from a wide range of sources and exposure routes (pesticides, antioxidants, parabens, UV-filters, synthetic musks, bisphenol-A, benzo(a)pyrene, perfluorooctane sulfonate and pentabromodiphenyl ether) were tested using a reporter gene assay (MDA-kb2). Chemicalswere combined at threemixture ratios, equivalent to single components' effect concentrations that inhibit the action of dihydrotesterone by 1%, 10% or 20%. Concentration addition (CA) and independent action were used to calculate additivity expectations. We observed complete suppression of dihydrotestosterone effects when chemicals were combined at individual concentrations eliciting 1%, 10% or 20% AR antagonistic effect. Due to the large number of mixture components, the combined AR antagonistic effects occurred at very low concentrations of individual mixture components. CA slightly underestimated the combined effects at all mixture ratios. In conclusion, large numbers of AR antagonists froma wide variety of sources and exposure routes have the ability of acting together at the receptor to produce joint effects at very low concentrations. Significant mixture effects are observed when chemicals are combined at concentrations that individually do not induce observable AR antagonistic effects. Cumulative risk assessment for AR antagonists should apply grouping criteria based on effects where data are available, rather than on criteria of chemical similarity

    Metrology of EUV Masks by EUV-Scatterometry and Finite Element Analysis

    Full text link
    Extreme ultraviolet (EUV) lithography is seen as a main candidate for production of future generation computer technology. Due to the short wavelength of EUV light (around 13 nm) novel reflective masks have to be used in the production process. A prerequisite to meet the high quality requirements for these EUV masks is a simple and accurate method for absorber pattern profile characterization. In our previous work we demonstrated that the Finite Element Method (FEM) is very well suited for the simulation of EUV scatterometry and can be used to reconstruct EUV mask profiles from experimental scatterometric data. In this contribution we apply an indirect metrology method to periodic EUV line masks with different critical dimensions (140 nm and 540 nm) over a large range of duty cycles (1:2, ..., 1:20). We quantitatively compare the reconstructed absorber pattern parameters to values obtained from direct AFM and CD-SEM measurements. We analyze the reliability of the reconstruction for the given experimental data. For the CD of the absorber lines, the comparison shows agreement of the order of 1nm. Furthermore we discuss special numerical techniques like domain decomposition algorithms and high order finite elements and their importance for fast and accurate solution of the inverse problem.Comment: Photomask Japan 2008 / Photomask and Next-Generation Lithography Mask Technology X

    Environmental concentrations of anti-androgenic pharmaceuticals do not impact sexual disruption in fish alone or in combination with steroid oestrogens

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Sexual disruption in wild fish has been linked to the contamination of river systems with steroid oestrogens, including the pharmaceutical 17α-ethinylestradiol, originating from domestic wastewaters. As analytical chemistry has advanced, more compounds derived from the human usage of pharmaceuticals have been identified in the environment and questions have arisen as to whether these additional pharmaceuticals may also impact sexual disruption in fish. Indeed, pharmaceutical anti-androgens have been shown to induce such effects under laboratory conditions. These are of particular interest since anti-androgenic biological activity has been identified in the aquatic environment and is potentially implicated in sexual disruption alone and in combination with steroid oestrogens. Consequently, predictive modelling was employed to determine the concentrations of two anti-androgenic human pharmaceuticals, bicalutamide and cyproterone acetate, in UK sewage effluents and river catchments and their combined impacts on sexual disruption were then assessed in two fish models. Crucially, fish were also exposed to the anti-androgens in combination with steroid oestrogens to determine whether they had any additional impact on oestrogen induced feminisation. Modelling predicted that the anti-androgenic pharmaceuticals were likely to be widespread in UK river catchments. However, their concentrations were not sufficient to induce significant responses in plasma vitellogenin concentrations, secondary sexual characteristics or gross indices in male fathead minnow or intersex in Japanese medaka alone or in combination with steroid oestrogens. However, environmentally relevant mixtures of oestrone, 17β-oestradiol and 17α-ethinylestradiol did induce vitellogenin and intersex, supporting their role in sexual disruption in wild fish populations. Unexpectedly, a male dominated sex ratio (100% in controls) was induced in medaka and the potential cause and implications are briefly discussed, highlighting the potential of non-chemical modes of action on this endpoint

    Rigorous FEM-Simulation of EUV-Masks: Influence of Shape and Material Parameters

    Get PDF
    We present rigorous simulations of EUV masks with technological imperfections like side-wall angles and corner roundings. We perform an optimization of two different geometrical parameters in order to fit the numerical results to results obtained from experimental scatterometry measurements. For the numerical simulations we use an adaptive finite element approach on irregular meshes. This gives us the opportunity to model geometrical structures accurately. Moreover we comment on the use of domain decomposition techniques for EUV mask simulations. Geometric mask parameters have a great influence on the diffraction pattern. We show that using accurate simulation tools it is possible to deduce the relevant geometrical parameters of EUV masks from scatterometry measurements. This work results from a collaboration between Advanced Mask Technology Center (AMTC, mask fabrication), Physikalisch-Technische Bundesanstalt (PTB, scatterometry), Zuse Institute Berlin (ZIB), and JCMwave (numerical simulation).Comment: 8 pages, 8 figures (see original publication for images with a better resolution

    Electrode thickness measurement of a Si(Li) detector for the SIXA array

    Get PDF
    Cathode electrodes of the Si(Li) detector elements of the SIXA X-ray spectrometer array are formed by gold-palladium alloy contact layers. The equivalent thickness of gold in one element was measured by observing the characteristic L-shell X-rays of gold excited by monochromatised synchrotron radiation with photon energies above the L3 absorption edge of gold. The results obtained at 4 different photon energies below the L2 edge yield an average value of 22.4(35) nm which is consistent with the earlier result extracted from detection efficiency measurements. PACS: 29.40.Wk; 85.30.De; 07.85.Nc; 95.55.Ka Keywords: Si(Li) detectors, X-ray spectrometers, X-ray fluorescence, detector calibration, gold electrodes, synchrotron radiationComment: 10 pages, 4 PostScript figures, uses elsart.sty, submitted to Nucl. Instrum. Meth.

    Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems

    Get PDF
    The global carbon cycle is an important component of the Earth system and it interacts with the hydrology, energy and nutrient cycles as well as ecosystem dynamics. A better understanding of the global carbon cycle is required for improved projections of climate change including corresponding changes in water and food resources and for the verification of measures to reduce anthropogenic greenhouse gas emissions. An improved understanding of the carbon cycle can be achieved by data assimilation systems, which integrate observations relevant to the carbon cycle into coupled carbon, water, energy and nutrient models. Hence, the ingredients for such systems are a carbon cycle model, an algorithm for the assimilation and systematic and well error-characterised observations relevant to the carbon cycle. Relevant observations for assimilation include various in situ measurements in the atmosphere (e.g. concentrations of CO2 and other gases) and on land (e.g. fluxes of carbon water and energy, carbon stocks) as well as remote sensing observations (e.g. atmospheric composition, vegetation and surface properties). We briefly review the different existing data assimilation techniques and contrast them to model benchmarking and evaluation efforts (which also rely on observations). A common requirement for all assimilation techniques is a full description of the observational data properties. Uncertainty estimates of the observations are as important as the observations themselves because they similarly determine the outcome of such assimilation systems. Hence, this article reviews the requirements of data assimilation systems on observations and provides a non-exhaustive overview of current observations and their uncertainties for use in terrestrial carbon cycle data assimilation. We report on progress since the review of model-data synthesis in terrestrial carbon observations by Raupach et al.(2005), emphasising the rapid advance in relevant space-based observations

    Extending the applicability of the dose addition model to the assessment of chemical mixtures of partial agonists by using a novel toxic unit extrapolation method

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Dose addition, a commonly used concept in toxicology for the prediction of chemical mixture effects, cannot readily be applied to mixtures of partial agonists with differing maximal effects. Due to its mathematical features, effect levels that exceed the maximal effect of the least efficacious compound present in the mixture, cannot be calculated. This poses problems when dealing with mixtures likely to be encountered in realistic assessment situations where chemicals often show differing maximal effects. To overcome this limitation, we developed a pragmatic solution that extrapolates the toxic units of partial agonists to effect levels beyond their maximal efficacy. We extrapolated different additivity expectations that reflect theoretically possible extremes and validated this approach with a mixture of 21 estrogenic chemicals in the E-Screen. This assay measures the proliferation of human epithelial breast cancers. We found that the dose-response curves of the estrogenic agents exhibited widely varying shapes, slopes and maximal effects, which made it necessary to extrapolate mixture responses above 14% proliferation. Our toxic unit extrapolation approach predicted all mixture responses accurately. It extends the applicability of dose addition to combinations of agents with differing saturating effects and removes an important bottleneck that has severely hampered the use of dose addition in the past. © 2014 Scholze et al
    corecore