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Abstract

Dose addition, a commonly used concept in toxicology for the prediction of chemical mixture effects, cannot readily be
applied to mixtures of partial agonists with differing maximal effects. Due to its mathematical features, effect levels that
exceed the maximal effect of the least efficacious compound present in the mixture, cannot be calculated. This poses
problems when dealing with mixtures likely to be encountered in realistic assessment situations where chemicals often
show differing maximal effects. To overcome this limitation, we developed a pragmatic solution that extrapolates the toxic
units of partial agonists to effect levels beyond their maximal efficacy. We extrapolated different additivity expectations that
reflect theoretically possible extremes and validated this approach with a mixture of 21 estrogenic chemicals in the E-
Screen. This assay measures the proliferation of human epithelial breast cancers. We found that the dose-response curves of
the estrogenic agents exhibited widely varying shapes, slopes and maximal effects, which made it necessary to extrapolate
mixture responses above 14% proliferation. Our toxic unit extrapolation approach predicted all mixture responses
accurately. It extends the applicability of dose addition to combinations of agents with differing saturating effects and
removes an important bottleneck that has severely hampered the use of dose addition in the past.
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Introduction

Dose addition (DA, here used synonymously with concentration

addition) is a widely used pharmacological concept for the

prediction of chemical mixture effects when only the toxicity of

individual components is known [1], [2]. Various risk assessment

methods for evaluating combined exposures are in use (e.g., toxic

equivalent factor approach, toxic unit summation, hazard index

and the point of departure index), and without exception all these

methods are derived from DA [3].For a wide variety of mixtures

and toxicological endpoints DA has proven remarkably successful

in formulating a dose additivity null hypothesis [4], [5]. This

hypothesis expresses the expected combination effect based on the

assumption that all mixture components exert their effects without

influencing each other’s action. Using the DA additivity hypothesis

as a point of reference, it is then possible to assess experimentally

observed mixture effects in terms of synergism or antagonisms.

Still lacking is sufficient empirical evidence about the joint action

of environmentally realistic mixtures, composed of agents from

different chemical and functional classes. This makes it difficult to

validate the assumption that DA might be applicable as a general

‘‘rule of thumb’’ for describing the joint action of chemical

mixtures. A crucial prerequisite is that the mathematical features

of DA are capable of dealing with these more difficult mixture

scenarios.

One such difficulty relates to mixtures composed of chemicals

that show differing maximal effects. Due to the mathematical

features of DA, the concept cannot be applied to effect levels that

exceed the maximal effect of the least efficacious compound

present in the mixture. As shown in Figure 1, this limits its

usefulness when dealing with mixtures composed of substances

that show partial agonism, where the effects at saturating

concentrations are somewhat smaller than is biologically achiev-

able. This has been observed with some aryl hydrocarbon receptor

(AhR) agonists and certain estrogenic agents [6], [7], [8], [9].

Similar problems occur when dealing with mixtures of chemicals

that show hormesis, as seen with phytotoxicants acting on plant

species [10].

Several attempts have been made to overcome these difficulties.

They all deal with the original mathematical formulation of DA

that defines a combination effect: a mixture composed of n

components with doses d1 of the first component, d2 of the second

component, and dn for the n-th component is dose additive when
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Here, EDX1, EDX1 …, EDXn are the doses of the individual

components that on their own produce the same effect X as the

mixture [11], [12]. These effect doses for a common effect level

have to be derived from regression models that describe the dose-

response relationships of all chemicals present in the mixture for

the effect of interest. The quotients dn/EDXn are called toxic units.

Equation 1 requires knowledge of the dose of each mixture

component that on its own produces the effect magnitude under

consideration. For this reason, equation 1 cannot be used for

predicting mixture effects that exceed the maximal effect of the

least efficacious component, because that effect dose cannot be

defined.

As can be seen from equation (1), a mixture effect for a pre-

defined effect level X is described implicitly and can rarely be

solved analytically. Only by using an iterative algorithm can the

solution be found numerically. However, under certain circum-

stances it is possible to re-arrange equation (1) into an explicit

expression such that the combined effect of the mixture is

described as a function of the effects of its components.

Consequently, any combination of full and partial agonists should

then allow the calculation of their combined effects and therefore

overcome the dilemma shown in Figure 1. Unfortunately, this

ideal scenario can only be achieved by making certain simplifying

assumptions about the regression models used for approximating

the dose-response relationships of individual mixture components

[13], [14], [15]. For example, Howard et al [14] utilized a

simplified version of the Hill function where instead of the usual

three parameters only two were used, one for maximal effect, and

the other for location (EC50). The slope parameter was kept fixed

for all chemicals, presumably because the agents under investiga-

tion displayed curves of similar steepness. Howard and colleagues

termed their solution ‘‘Generalized Concentration Addition’’

(GCA), and it afforded sufficient flexibility for the accurate

prediction of AhR-dependent gene expression for full and partial

AhR agonists, as well as competitive antagonists [15].

However, the simplifying assumptions that have to be made

during the modeling of dose-response relationships for the

individual mixture components may impact negatively on the

quality of mixture effect predictions under DA, particularly when

the biological data for the single chemicals require more complex

non-linear regression functions. This is the case with estrogenic

agents where dose-response curves with different slopes are

common [9], [16]. The most widely used regression functions

for dose-response analyses have at least three model parameters,

and these are usually needed for the adequate description of global

data differences in terms of position (potency), steepness and

maximal effect plateaus [17]. But with these non-linear regression

functions it is not possible to re-arrange equation (1) into an

explicit functional form that would allow for the analysis of partial

agonists, and therefore an extension of the CGA model on basis of

more flexible dose-response models cannot be achieved.

In view of these difficulties we became interested in exploring

alternative quantitative approaches for dealing with mixtures

composed of partial agonists. We reasoned that a straightforward

pragmatic solution could be found by extrapolating the dose-

response curves of partial agonists to higher effect levels beyond

their leveling-off range. The extrapolated effects could then be

used for the calculation of the dose addition null hypothesis. The

advantage of this approach is that it can accommodate quite

complex regression models for the dose-response data of the

individual mixture components. However, the use of extrapolation

methods is fraught with its own difficulties, particularly in relation

to the selection of an appropriate slope for the extrapolated dose-

response function. Too steep a gradient may overestimate the

contribution of the partial agonist to the overall mixture effect in

relation to the other mixture components, and consequently bias

the dose addition prediction. The challenge in using extrapolation

Figure 1. Example of dose-response curves from three mixture components (A) and their joint effect curve predicted by dose
addition (B), for serial dilutions of a mixture with fixed mixture ratio proportional to their EC40s.
doi:10.1371/journal.pone.0088808.g001
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methods lies in ensuring that the dose addition prediction is as

close as possible to the experimentally observed dose additive

effect. In principle, this can be achieved by providing a range of

potential additivity expectations, based on assumptions of the

value of the toxic units in equation (1) that reflect theoretically

possible extremes (‘‘toxic unit extrapolation’’).

We tested a mixture of 21 estrogenic chemicals and compared

the accuracy of mixture effect predictions derived from a toxic unit

extrapolation approach with those produced by the GCA method.

The estrogenic agents included compounds as diverse as steroidal

hormones (endogenous and synthetic), pesticides, cosmetic addi-

tives and phytoestrogens, all with dose-response curves that

exhibited widely varying shapes, slopes and maximal effects ([9],

[16]). The accuracy of both predictions was evaluated by

comparison with the combination effects observed experimentally

with the E-Screen, an assay sensitive to the proliferative effects of

estrogen receptor agonists in a human epithelial breast cancer cell

line, MCF-7 BOS [18]. Although cell proliferation offers the

possibility to study processes that might interfere with steroid

receptor signaling through events beyond estrogen receptor (ER)

binding (e.g., activation of growth factor signaling cascades), these

processes are believed to converge on the activation of the ER,

which ultimately is responsible for cell division and proliferation.

We consider, therefore, that the pharmacological assumption of

DA is fulfilled, i.e. all compounds act on the same toxicological

endpoint by a common mechanism of action. Accordingly, we

used DA as the mixture assessment concept for the evaluation of

our data.

Materials and Methods

Chemicals
17b-Estradiol (E2, 99% purity), estrone (99%), aldrin (98.6%),

dieldrin (99.8%), endosulfan a (I, 99.5%), endosulfan b (II, 99.2%),

methoxychlor (99.5%), o,p’-DDT (97.5%), o,p’-DDD (99%), p,p’-

DDT (99.1%), p,p’-DDE (99.5%), b-hexachlorocyclohexane (b-

HCH, 98.1%), n-butylparaben, n-propylparaben, and bisphenol A

(.99%) were purchased from Sigma-Aldrich Company (Dorset,

UK). 3-(4-methylbenzylidene)camphor (4-MBC, Eusolex 6300,

.99.7%) and octyl-methoxycinnamate (OMC, Eusolex 2292,

.98%) were from VWR international (Poole, UK). 3-Benzylidene

camphor (3-BC, Unisol-22, .97%) was from Induchem (Volk-

etswil, Switzerland). Genistein was obtained from Alfa Aesar

(Lancashire, UK), and 6-acetyl-1,1,2,4,4,7-hexamethyltetraline

(AHTN, tonalide) and hexahydrohexamethylcyclopentabenzo-

pyran (HHCB, Galoxolide) from LGC Promochem (Teddington,

UK). All chemicals were used as supplied and stock solutions (1 –

10 mM) were prepared in HPLC-grade ethanol (VWR interna-

tional). Stock solutions and subsequent dilutions were stored at

220uC. All remaining chemicals were purchased from Sigma-

Aldrich, unless stated otherwise.

Routine cell culture
MCF-7 BOS breast cancer cells were kindly provided by Ana

Soto (Tufts University, Boston), who cloned the cells (C7MCF-7)

from the original MCF-7 cells obtained from the Michigan Cancer

Foundation [18]. Cells were routinely maintained in 75 cm2

canted-neck tissue culture flasks in Dulbecco’s modified Eagle’s

medium (DMEM, Invitrogen Corporations, U.K.) supplemented

with 5% fetal bovine serum (FBS, Invitrogen) and 1% (v/v) MEM

nonessential amino acids (MEM-NEAA, Invitrogen) in a humid-

ified incubator, at 37uC, with 5% CO2. Cells were subcultured at

approximately 70% confluence over a maximum of 10 passages

and regularly tested for Mycoplasma contamination.

E-Screen assay procedure
The protocol described previously [9], carried out in 96-well

micro-titer plates, was used. A detailed description of the data

normalisation procedure that we employed can be found in [7].

All components and the mixture were tested in at least four

independent experiments, run on up to three micro-titer plates,

with each plate containing eight increasing concentrations of the

test chemical in duplicates. Some of the data for the single

components have been published in [16]. To ensure that none of

the 21 compounds dominated the overall mixture effect, they were

combined in proportion to their EC10 values, concentrations

associated with 10% of the maximal effect achievable with

saturating concentrations of 17b-estradiol. This effect level was

the highest common level for all compounds that we could

determine with high statistical certainty, and which was well above

the statistical detection limit of the assay. The exact composition of

the mixture analysed is given in Table 1.

Statistical dose response analysis
Statistical dose-response regression analyses for the single

substances and mixtures were conducted by using a best-fit

approach [17]. Various non-linear regression models (logit, probit

weibull, generalized logit I and II), which all describe monotonic

sigmoid dose-response relationships, were fitted independently to

the same data set and the best fitting model was selected on the

basis of a statistical goodness-of-fit criterion. Data analysis was

performed on pooled data from all the repeat studies. To account

for the intra- and inter-study variability associated with this nested

data scenario, the generalized non-linear mixed modelling

approach was used, in which both fixed and random effects are

permitted to have a non-linear relationship with the effect

endpoint [19]. For the normalised read-outs (cell number), two

sources for random effects were identified: First, the dose-response

data for the same chemical from different studies varied in their

curve steepness, which was dealt with by including an additional

random effect in the steepness model parameter. Secondly, slight

shifts of the entire curves based on the log10-transformed

concentration scale were observed, which was accounted for by

including an additional shift parameter as random effect in the

non-linear regression model. The random effects were assumed to

follow a Normal distribution. Statistical uncertainties for the

estimated effect doses were expressed as 95% confidence belts and

approximately determined by applying the bootstrap method [20].

Calculation of mixture effect predictions using dose
addition

The mixture experiments were designed according to the fixed-

ratio mixture design, i.e. serial dilutions of a stock solution of a

mixture with known mixture ratio were made and then tested

against the corresponding DA predictions. The mathematical and

statistical procedures used for calculating dose-additive mixture

effects according to Equation 1 are described in [7]. The statistical

uncertainty for the mixture effects predicted by DA was

determined using the bootstrap method [20] and expressed as

95% confidence limits for the predicted mean estimate. Differ-

ences between predicted and observed effect doses were deemed

statistically significant when the 95% confidence belts of the

prediction did not overlap with those of the experimentally

observed mixture effects.

Dose Addition Mixture Model for Partial Agonists
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Description of the toxic unit extrapolation approach for a
fixed-ratio design

For dose ranges that are higher than the effect doses that

correspond to the leveling-off range of a partial agonist, the toxic

unit extrapolation approach supposes that partial agonists

contribute to the total mixture effect by a certain toxic unit. It

can be assumed that the value of this toxic unit will vary with total

mixture dose and will be different for different partial agonists

present in the mixture. It is not immediately obvious which

numerical values such toxic units should take, but it is reasonable

to suppose that the range of values lies between two extremes, as

follows: Firstly, it can be assumed that a partial agonist makes no

further contribution to the overall mixture effect when its dose in

the mixture approaches its individual saturation range. By using

the example sketched out in Figure 1, we have illustrated this

scenario in Figure 2 a. Here, toxic units for each of the three

components s1, s2 and s3 are plotted as a function of the overall

mixture effect. In this example, we have assumed that the three

substances are combined at a mixture ratio proportional to the

dose of each individual component that produces a 40% effect. It

can be seen that the toxic units for each component vary according

to the total predicted mixture effect. This is a reflection of the

different steepness of each compounds’ individual dose response

curve (see Figure 1 and equation 1). Under the additivity

assumption of DA, the sum of the toxic units corresponding to a

specific predicted combination effect (along the vertical lines in

Figure 2 a) must equal 1. Of special interest is the point where s1,

s2 and s3 have the same toxic unit of 0.333, i.e. where the three

toxic unit curves in Figure 2 a intersect. Because the mixture ratio

was set proportional to each compounds’ ED40, this point

corresponds to a mixture effect of 40%. As component s3

individually produces a maximal effect of only 50% (see

Figure 1), its toxic unit curve rapidly approaches zero as the total

mixture effect nears 50%. This is because the denominator of the

toxic unit term, i.e. the dose of the single compound that elicits an

effect equal to that of the mixture, will tend towards infinity as the

total mixture effect approaches the effect corresponding to the

saturation doses of the partial agonist (here: 50%). To meet the

demand of the additivity assumption of DA (i.e. the sum of toxic

units equals 1), the curves for the other two components must

increase steeply as the total mixture effects comes within reach of

50% (see Figure 2 a).

A second assumption can be made to mark the other extreme of

the theoretically possible range of toxic unit values for a partial

agonist at mixture doses that exceed its saturation range. Here, its

toxic unit is assumed to be fixed to a certain value corresponding

to its saturation range (maximum toxic unit assumption).

Calculations of predicted mixture effects under the maximum

toxic unit assumption require decisions about the numerical value

of a partial agonist’s toxic unit. We have dealt with this problem in

terms of setting the toxic unit for a partial agonist to predefined

Table 1. Estrogenicity of individual compounds and mixture.

Substance regression model EC10

Relative proportions
(percentages)

(by order of EC10) RM ĥh1 ĥh2 ĥh3 ĥhmin ĥhmax nM [CI] in test mixture

17b-estradiol Logit 3.32 1.76 -- 0* 0.99 7.56E-04 [5.63E-04;1.02E-03] 1.493E-06

Estrone Glogit I 0.50 2.59 0.8 0* 1.12 4.61E-02 [3.76E-02;6.09E-02] 1.081E-04

Genistein Logit 26.56 3.25 -- 0* 0.84 2.52E+01 [1.90E+01;4.40E+01] 5.907E-02

Bisphenol A Logit 27.23 2.72 -- 0* 0.92 7.61E+01 [5.64E+01;1.00E+02] 1.784E-01

o,p’-DDT Weibull 26.62 2.37 -- 0* 0.77 9.04E+01 [6.48E+01;1.50E+02] 2.119E-01

Butyl paraben Logit 28.77 2.53 -- 0* 0.88 4.28E+02 [3.25E+02;5.92E+02] 1.003E-00

Endosulfan a (I) Weibull 28.36 2.40 -- 0* 0.79 4.49E+02 [3.18E+02;6.67E+02] 1.053E-00

b-HCH Weibull 210.51 3.13 -- 0* 0.85 4.98E+02 [3.63E+02;6.01E+02] 1.167E-00

3-BC (Unisol S-22) Probit 26.62 2.02 -- 0* 0.73 5.39E+02 [4.50E+02;7.04E+02] 1.263E-00

o,p’-DDD Glogit I 215.02 4.56 0.8 0* 0.68 6.11E+02 [4.75E+02;8.41E+02] 1.432E-00

Endosulfan b (II) Weibull 210.82 3.19 -- 0* 0.61 7.52E+02 [6.08E+02;9.40E+02] 1.763E-00

Methoxychlor Glogit I 216.34 4.72 0.6 0* 0.50 8.09E+02 [5.78E+02;1.23E+03] 1.896E-00

Propyl paraben Logit 212.54 3.61 -- 0* 0.86 8.13E+02 [6.95E+02;8.88E+02] 1.905E-00

4-MBC (Eusolex 6300) Weibull 210.12 2.79 -- 0* 0.42 1.45E+03 [1.27E+03;2.15E+03] 3.399E-00

p,p’-DDT Glogit I 217.27 4.70 0.7 0* 0.50 1.63E+03 [1.31E+03;1.95E+03] 3.816E-00

Dieldrin Weibull 212.16 3.49 -- 0* 0.27 1.80E+03 [1.25E+03;2.72E+03] 4.212E-00

AHTN (Tonalide) Weibull 29.90 2.56 -- 0* 0.35 2.74E+03 [2.08E+03;3.57E+03] 6.444E-00

OMC (Eusolex 2292) Glogit I 24.30 1.69 6.4 0* 0.29 3.47E+03 [1.89E+03;7.57E+03] 8.143E-00

p,p’-DDE Glogit I 213.58 4.05 4.1 0* 0.41 3.71E+03 [3.42E+03;4.94E+03] 8.694E-00

Aldrin Glogit I 227.81 6.76 0.4 0* 0.20 7.64E+03 [6.21E+03;1.14E+04] 1.791E+01

HHCB (Galaxolide) Weibull 27.95 1.96 -- 0* 0.14 1.51E+04 [1.25E+04;2.00E+04] 3.545E+01

Mixture of 21 components Weibull 211.64 3.02 -- 0* 0.57 2.04E+03 [1.75E+03; 2.44E+03]

EC10: concentration associated with 10% proliferation rate. Values in brackets denote the upper and lower limits of the approximate 95% confidence interval based on
bootstrap replicates; the column ‘‘RM’’ indicates the mathematical regression function, used for describing the concentration response relationships (see [17] for more
details). ĥh1,ĥh2,ĥh3,ĥhmin,ĥhmax estimated model parameters, if marked by *, then held fixed, i.e. not estimated.
doi:10.1371/journal.pone.0088808.t001
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values corresponding to doses producing certain fractions of the

maximal effect level, for example 80%, 90% or 99%. With 50% as

the maximal effect, as in our example, this translates into 40%,

45% and 49.5% on the predicted mixture effect scale (see Figure 2

b). The corresponding toxic units for the partial agonist s3 can now

be read off the graph (Figure 2 b) by seeking the intersections of

the three vertical lines k1, k2 and k3 with the toxic unit curve for s3,

i.e. 0.333 (for 40% mixture effect), 0.29 (for 45% mixture effect)

Figure 2. Description of the toxic unit extrapolation method, demonstrated at the hypothetical 3-component mixture from
Figure 1: (A) toxic units of three compounds (s1, s2 and s3) for mixture effect predictions according to DA. The third compound has a
maximum effect of 50% (see Figure 1), thus predictions and toxic units above 50% cannot be calculated. (B) The toxic unit of the third compound is
held fixed at effect prediction of and above 49.5%, 45% and 40% (blue line), i.e. s3(k1), s3(k2) and s3(k3), respectively. The corresponding toxic units for
the first and second compound are shown as green and red lines, respectively. (C) Dose-response curves of the single compounds after the toxic unit
extrapolation, for three different fixed toxic units of the third compound at effect levels k1, k2 and k3. (D) Prediction curve for mixture effects
according to DA (solid line), prediction curves of the toxic unit extrapolation assuming maximal toxic unit contributions of the third compound as
outlined in B and D (small lines) and assuming no contribution after 50% (dashed line). For details, see Materials and Methods.
doi:10.1371/journal.pone.0088808.g002
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and 0.15 (for 49.5% mixture effect). These values represent three

choices for the maximal contribution of s3 to the overall mixture

effect beyond its own saturation level. The choice of a particular

maximum toxic unit for the partial agonist restricts the range of

toxic unit values that the remaining two mixture components can

assume (the sum of toxic units must still be 1). If, for example, the

toxic unit for the partial agonist s3 is set fixed to 0.333 for all

predicted mixture effects from 40% to 100%, then the sum of toxic

units left to be allocated to s1 and s2 cannot be greater than 0.666.

This value is subsequently distributed between s1 and s2 according

to equation 1. The differences between the toxic unit curves for s1

and s2 reflect the differences in the steepness of the dose-response

curves for s1 and s2 at high effect levels (see Figure 1A). The

contribution of compounds with a comparatively shallow dose-

response curve (in our case s2) to the predicted mixture effect

usually decreases with increasing mixture doses, except where all

mixture compounds have equally shallow dose-response curves.

Figure 2 c shows the dose-response curve for the partial agonist

s3 together with the extrapolated curves that result according to

the minimal toxic unit assumption and the various fixed values

under the maximum toxic unit assumption. These extrapolations

are used to calculate the expected additive effects according to DA

beyond the leveling-off range of s3. The extrapolated curves for s3

are not all smooth, but the one corresponding to the highest toxic

unit contribution and the smallest fraction of the maximal effect,

k1 and 80%, respectively, gives the smoothest continuation of s3

dose-response curve. In deriving the maximal toxic unit assump-

tion from the experimental data with the 21-component mixture of

estrogenic chemicals, we have fixed the toxic unit to that

corresponding to 70% of the saturation effect of each partial

agonist. The choice of this value was guided by effect levels at

which the highest steepness of the non-linear regression functions

was observed: for symmetrical functions (e.g., logit) it is half of

their maximal model asymptote (50%), whereas for asymmetrical

models (e.g., Generalized logit) it was up to 70% of their maximal

effect plateau. We performed simulation studies to investigate the

optimal cut-off level, and unless the least efficacious compound

dominated the mixture composition, we found the value of 70% to

be the best trade-off between safeguarding that the toxic unit

contribution was really maximal and a sufficient response range

used for the prediction by DA. Therefore we recommend this

value as default for all data situations where the saturation effect

has been estimated with high confidence.

Finally, the range of DA prediction curves derived from the

minimum and the various maximum toxic unit assumptions is

shown in (Figure 2 d). The bold line represents the anticipated

combination effects according to the conventional approach (as in

Figure 1), and the thin lines show the predicted effects resulting

from the maximum toxic unit assumptions for the three cut-off

values above. The thin dashed line depicts the predicted

combination effects according to the minimum toxic unit

assumption. Although the three different maximum worst-case

settings resulted in very different dose-response curves for the third

component (Figure 2C), the differences in the prediction curves

are rather small. Moreover, the range of predicted mixture effects

between the minimum and most conservative maximum toxic unit

assumption is small. The leveling-off range for the mixture dose-

response curve cannot be calculated using our toxic unit

extrapolation approach.

Mathematical treatment of the toxic unit extrapolation
approach

Mathematically, the approach can be described as follows: for

simplicity’s sake, suppose that only the nth component of the n-

compound mixture is a partial agonist. Suppose further that the

experimental design for the mixture study is the ‘ray design.’ A ray

is defined by a fixed mixing ratio of the components in a specified

mixture. Depending on whether the dose dn of the nth component

in the mixture exceeds the cut-off dose Dn along a fixed ratio ray,

dose additivity can be described according to the terminology of

Equation 1 as

dnƒDn :
d1

EDX1
z

d2

EDX2
z:::z

dn

EDXn

~1

dnwDn :
d1

EDX1
z

d2

EDX2
z:::zTUXn~1 :

ð2Þ

Here, the toxic unit TUXn of the partial agonist is set to a fixed

value, with

TUXn~
dn

KXn

, ð3Þ

where KXn is the dose that is extrapolated to the effect level X. The

limitation to the fixed-ratio design guarantees a unique solution

(assuming that only monotonic dose-response relationships are

considered). The cut-off dose Dn was selected in our study as dose

that produces 70% of the saturation effect. Assuming that the

dose-response relationship of the partial agonist can be described

by a monotonic function Fn and the maximal effect level by a

parameter estimate ĥhmax [17], the cut-off dose Dn can then be

estimated through the inverse function F{1
n as

Dn~F{1
n (0:7 � ĥhmax) : ð4Þ

Consequently, an effect level of x = 0.7* ĥhmax is set as borderline

for calculating dose additive response according to DA (Equation

1).

Adaptation of the Generalised Concentration Addition
(GCA) model

We have generalised the GCA model as originally described by

[14] for a mixture composed of n components, as follows: Let hi
max

and ED50i be the Hill model parameters for the ith component

describing the maximal effect level and the median effect dose,

respectively. The Hill function with slope parameter 1 then

describes the response E at a given dose d1 as

E(d1)~
hmaxd1

ED501zd1

: ð5Þ

According to [14] (Equation 17), the combined effect for a

binary mixture at given total mixture dose dmixture can then be

described as

E(dmixture)~E(d1zd2)~
d1 � h1

max=ED501zd2 �h2
max=ED502

1zd1=ED501zd2=ED502
: ð6Þ

Assuming that the individual doses of all components as present

in the mixture can be expressed as fractions p of the total mixture

dose dmixture, with di = pi*dmixture (fixed-ratio mixture design), the
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dose-additive mixture effect can be calculated for a n-component

mixture as

E(dmixture)~

Pn

i~1

(di � hi
max=ED50i)

1z
Pn

i~1

(di=ED50i)

~

dmixture

Pn

i~1

(pi � hi
max=ED50i)

1zdmixture

Pn

i~1

(pi=ED50i)

:
ð7Þ

Increasing mixture doses to infinity, we get the maximal effect

level Emax:

Emax : lim
dmixture??

E(dmixture)~

Pn

i~1

(pi � hi
max=ED50i)

Pn

i~1

(pi=ED50i)

: ð8Þ

Results

We conducted extensive concentration-response analyses with

all the 21 individual chemicals that were included in the mixture.

In the interest of providing unbiased response curves for the

calculation of expected mixture responses, we used a variety of

regression models and selected the best-fitting model for each

chemical [17]. The model parameters and effect concentrations

are shown in Table 1; some of the data have been published in

[16]. Figure 3 shows the best-fitting regression curves for all 21 test

components, covering only the non-toxic concentration ranges

that were tested experimentally. Most compounds were tested at

higher concentrations, but where proliferation responses began to

decline as concentrations increased, the data points were judged as

cytotoxic and were not included in constructing concentration-

response models. The concentration-response curves of the 21

chemicals showed differences in terms of shape, gradient and

position, with 17b-estradiol the most potent component

(EC10 = 0.00076 nM) and the synthetic musk galaxolide the

weakest (EC10 = 15.1 mM). Differences in maximal effects ranged

from 100% for the steroids to only 14% for galaxolide. A further 8

chemicals showed maximal effects ranging from 20% to approx-

imately 50% proliferation.

All chemicals were mixed at a ratio proportional to their

individual EC10 values. We first predicted the combination effects

of the 21 chemicals by using the conventional DA concept

(equation 1). As expected, this yielded a curve for responses of up

to 14%, the maximal effect of the least efficacious component in

the mixture, galaxolide (Figure 4, red curve). Due to the large

number of repeats in the concentration-response data that formed

the basis of the regression analysis of the single components, we

were able to produce a DA prediction curve of very low statistical

uncertainty (dotted red lines in Figure 4). The width of the 95%

confidence belt of the prediction never exceeded 2% on the effect

scale.

By using the toxic unit extrapolation approach, it was possible to

extend the effect range of the prediction from 14% to between

approximately 50% (minimum toxic unit assumption) and 70%

(maximum toxic unit assumption) of those seen with the positive

control (saturating concentrations of 17b-estradiol) (Figure 4). For

the extrapolation of mixture effects according to the maximum

toxic unit assumption, we fixed the toxic unit of each single partial

agonists to a value associated with 70% of its maximal effect

plateau, as estimated from the regression models (Table 1). For

extrapolations derived from the minimum toxic unit assumption,

toxic units were set to zero (Equation 3).

The predictions were then tested experimentally. The experi-

mental data showed comparatively little variation in the low

concentration range, but variation increased as the mixture effect

curve approached its plateau with a maximal cell proliferation of

approximately 55%.

Over the entire range of observations, the predicted combina-

tion effects agreed very well with the experimentally observed data

(Figure 4), both for the predictions derived from Equation 1 (red

curve) and for those from the toxic unit extrapolation approaches

(green curves). For a total mixture concentration of 10,000 nM,

the DA predictions according to the minimum and maximum

toxic unit assumptions spanned responses of between 35% and

45% proliferation, respectively. The experimentally observed

effects generally agreed better with the extrapolation derived from

the maximum toxic unit assumption.

Figure 5 shows a comparison of the experimental mixture data

with the prediction derived from the GCA approach based on Hill

functions for all components’ individual dose-response data. Here,

the prediction curve from the toxic unit extrapolation approach is

not included. At low concentrations, the GCA overestimated the

observed responses, but at higher concentrations the GCA model

underestimated the proliferative effects of the mixture. The model

predicted a maximal response of 41%. Had we used our toxic unit

extrapolation approach based only on Hill functions (with

steepness model parameters fixed to 1), and not with the variety

of regression models shown above, we would have obtained a

curve very similar to the one shown in Figure 5, with its

overestimation of combination effects in the low concentration

range (data not shown). This highlights the importance of accurate

descriptions of dose-response relationships for each mixture

component for achieving valid mixture effect predictions.

Discussion

We show that the toxic unit extrapolation approach is able to

produce DA predictions that agree very well with our experimen-

tally observed data. The approach affords sufficient flexibility for

dealing with mixture components that exhibit concentration-

response relationships with varied slopes, positions and maximal

effects. Our findings help to dispel the widespread misconception

that DA is only applicable to mixtures composed of chemicals that

show parallel response curves. However, the general formulation

of DA neither assumes a specific shape of each concentration-

response curve of the components, nor a specific relationship

between the curves. The general application of DA is sometimes

confused with ‘‘simple similar action’’, a special case of DA which

requires that the individual curves of the components are dose-

parallel, as in the ‘‘toxic equivalence factor’’ (TEF) concept. Dose-

parallel curves occur with endpoints relatively close to molecular

events, such as receptor binding or receptor activation, but often

do not appear effects representative of higher levels of biological

organisation. The lack of parallelity with apical endpoints may be

explained in terms of differences in the toxicokinetic and

toxicodynamic behaviour of substances. Such phenomena are

relevant to the E-Screen assay where differential uptake,

metabolism and transport out of the cells may lead to non-parallel

curves. Furthermore, the E-Screen is more integrative assay than

e.g. an ER binding assay, and responds not only to the classical

activation of the ER by direct binding of the ligand, but also to

indirect activation, such as phosphorylation by protein kinases.
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Figure 3. Concentration-response curves for the 21 tested estrogenic chemicals with regression lines derived from the best fitting
models for E-Screen in vitro data. All agents were tested in at least four independent experiments, run on up to three micro-titer plates, with each
plate containing eight increasing concentrations of the test chemical in duplicates (data not shown).
doi:10.1371/journal.pone.0088808.g003

Figure 4. Predicted and observed estrogenic activity of a mixture of 21 components combined according to their individual EC10.
Observed mixture effects (black circles), controls (gray circles) and regression curve (solid black line, with 95% confidence belt as dotted black lines)
are from four independent experiments, each tested on three micro-titer plates. Effect variation is expressed by box and whisker diagrams; the boxes
show 1.5 interquartile ranges around the median. Predicted effects were calculated using the DA concept (solid red line), dotted red lines show the
corresponding approximate 95% confidence belt. The green lines and the green shaded area are the lower and upper estimates of predictions that
are based on toxic unit extrapolations (see Material & Methods for details).
doi:10.1371/journal.pone.0088808.g004
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We noticed that the predictions derived from the minimum

toxic unit assumption, where partial agonists are presumed to

contribute nothing to the overall mixture effect at doses beyond

their saturation ranges, did not perform as well as the maximum

toxic unit assumption. This may be a reflection of biological

realities: Partial agonists will still make a contribution to the overall

mixture effect when their doses fall in their leveling-off range, a

phenomenon that the minimum toxic unit assumption is by

definition unable to capture. Even so, it is striking that the

prediction differences between the two extremes of extrapolations

were not very large, particularly not in the range of mixture doses

up to the median effect level of the mixture response curve.

If the maximum toxic unit assumption is better suited to deal

with mixture scenarios that require flexible regression models for

describing accurately dose-response relationships, it is all the more

important to consider the implications in terms of data require-

ments and data quality. As detailed during the description of the

toxic unit extrapolation approach, the choice of the highest effect

dose for each partial agonist component that can be considered

acceptable for DA predictions is crucial. In our study we

consistently used the same cut-off criterion, i.e. 70% of the

maximum effect level. Thus, the quality of prediction strongly

depends on accurate estimations of the saturating effect levels for

each compound. In regression analysis, this approximation is

achieved by estimating the maximum asymptotic model parameter

(ĥhmax in Table 1), but this requires effect data of sufficient quality.

With the E-Screen assay this may sometimes be problematic, for

two reasons: firstly, between-study data variation is highest for

high effect levels, i.e. more data is needed to achieve effect

estimates for higher concentrations that are statistically compara-

ble with low effect estimates. Secondly, at concentrations nearing

the saturation range cytotoxicity may become prominent, and this

may result in a down-turn of effects, such that the maximal effect

plateau occurs only in a narrow range of concentrations. This

phenomenon has been observed with certain estrogenic chemicals

[9]. In such situations, the quality of estimating saturating effect

levels strongly depends on the spacing of the tested concentrations,

which has to be done judiciously. However, these complications

were not relevant with the estrogenic chemicals included in our

mixture.

The alternative CGA model did not produce mixture effect

predictions of high accuracy and proved to be inferior to our toxic

unit extrapolation approach. To a very large degree, this was due

to the problems we encountered in using the Hill function as the

regression model for the single components in our mixture. We

observed that the Hill function generally produced regression

models with poorer goodness of fit than the regression models

selected by the best-fit approach [17]. The Hill function generally

overestimated the single component’s effects at low concentrations

(data not shown). Perhaps due to the fact that it has a symmetrical

shape, it lacks the flexibility to accurately approximate the effects

of the tested chemicals, particularly in the low dose range. This

may explain why the CGA model, which relies on the Hill

function with slope parameter 1, consistently overestimated the

observed mixture responses at low effects. Mathematically, DA is

an averaging concept, with the predicted effect doses correspond-

ing to the weighted harmonic mean of all individual effect doses,

where the weights relate to the fractions of the individual

Figure 5. Predicted and observed estrogenic activity of the mixture of 21 components shown in Figure 4. The predicted effects were
calculated using the model of DA (solid red line) according to the GCA approach by [14]. Observed mixture effects (black circles) and controls (gray
circles) are from four independent experiments, each tested on three micro-titer plates. Effect variation is expressed by box and whisker diagrams; the
boxes show 1.5 interquartile ranges around the median.
doi:10.1371/journal.pone.0088808.g005
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compounds in the mixture. Therefore, if the regression model for

the single components always produces systematic errors in the

same direction, the DA prediction will be biased in the same way,

as was indeed observed with the CGA model (Figure 5). The

advantage of the CGA method is in its comparative ease of use,

with less demanding calculations. This method will therefore be

appropriate when the mixture components exhibit dose-response

curves with similar gradients, or when less accurate predictions are

judged to be sufficient.

The mixture of 21 estrogenic chemicals showed proliferation

responses that were matched accurately by the prediction

according to DA and, at higher effect concentrations, according

to the toxic unit extrapolation method. These outcomes confirm

those from previous studies ([7]; [16]), where DA approximated

well the observed response from various multi-component

mixtures of estrogenic agents, suggesting that for cell proliferation

and testing conditions defined by the E-Screen assay the

pharmacological requirements of ‘‘similar action’’ of the DA

concept were fulfilled. We applied the DA extrapolation approach

also successfully to multi-component mixture studies in various

other in vitro testing systems, e.g. on reporter-gene endpoints for

estrogenicity (ERLUX) [21] and anti-androgenicity (MDA-kb2)

[22]. Experimental evidence also suggests that potential pharma-

cokinetic or dynamic ‘‘interactions’’ between compounds were not

pronounced enough to become detectable which would have

diminished the predictive power of DA. Considering that the E-

SCREEN represents the highest level of biological complexity of

all the in vitro assays in use for the screening of endocrine active

chemicals and taking into account the large numbers of chemicals

with varied structural features that were tested in combination, we

conclude that DA provides reasonable approximations for

combination effects of estrogenic chemicals with the endpoint of

cell proliferation. In addition, our study has demonstrated that the

toxic unit extrapolation method is capable of extending the

applicability of DA to combinations of agents with differing

saturating effects. The E-Screen is considered as a biomarker for

internal EDC exposure and the toxic unit prediction tool

developed here will be useful to estimate the combined internal

effective doses in humans on the basis of chemical analytical data

of tissue levels of multiple estrogenic agents. Estimations of

combined effects can now include compounds that exhibit much

lower maximal effect responses than the reference compound

estradiol. Our new approach thus overcomes a limitation which

has previously hampered the estimation of cumulative internal

EDC exposures. The new method can also be applied to other

classes of environmental pollutants, with other effect profiles.
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